Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: Guihong Bi x
  • HortTechnology x
Clear All Modify Search

The effect of plant growth regulators (PGRs) on growth and flowering of potted red firespike (Odontonema strictum) were examined in two experiments. In Expt. 1, foliar spray applications of daminozide, uniconazole, paclobutrazol, or flurprimidol or media drenches of paclobutrazol or flurprimidol were applied. In Expt. 2, foliar spray application of daminozide or media drenches of paclobutrazol or flurprimidol were further tested for efficacy of height control. Both studies included an untreated control. In Expt. 1, drench applications of paclobutrazol and flurprimidol resulted in plants 65% or 46% to 62% shorter than control, respectively. Paclobutrazol and flurprimidol drenches also decreased overall plant growth by 81% to 88% and 74% to 84%, respectively, compared with the control plants. PGRs did not affect number of inflorescences; however, paclobutrazol and flurprimidol delayed flowering 23 to 31 days. In Expt. 2, plants treated with flurprimidol or paclobutrazol drenches were shorter than the control. The greatest reduction in total plant growth occurred using a flurprimidol drench at 0.47 mg/pot, which resulted in plants 78% smaller than the untreated control. Paclobutrazol and flurprimidol increased the time to flowering 11 to 27 days and 10 to 26 days, respectively. The most attractive and well-shaped plants were achieved with flurprimidol applied at 0.24 mg/pot or applications of paclobutrazol at 0.35 mg/pot.

Full access

This study evaluated the effects of paclobutrazol (PBZ) and flurprimidol on the morphological and physiological characteristics of potted red firespike (Odontonema strictum) under drought stress. PBZ and flurprimidol were applied as a soil drench at 0.24 mg/pot. Untreated plants acted as a control. The plants were exposed to drought stress 2 weeks after plant growth regulator (PGR) application. Another group of plants treated with PGRs was watered regularly. A reduction in plant height, plant diameter, and growth index (GI) was observed in plants treated with PGRs and drought stress 5 weeks after beginning the study. Drought stress reduced plant height by 45% compared with control. Flurprimidol under drought stress decreased plant diameter and GI by 36% and 76%, respectively, compared with the control. The least leaf area and plant dry weight were observed in plants drenched with flurprimidol and grown under drought stress. Drought stress also delayed flowering and the number of plants flowering. Plants treated with PBZ had the highest photosynthesis rate, 54% more than untreated plants under drought stress alone. The lowest stomatal conductance (g S) was measured in plants under drought stress alone or drought plus PBZ. Application of PBZ-enhanced red firespike drought tolerance reducing adverse effects of water stress on photosynthesis during the experiment.

Full access

Pruning is commonly performed during production of nursery crops to produce symmetrical, compact plants that are pleasing to the consumer’s eye. To achieve the desired results, nursery growers hand prune or apply plant growth regulators (PGRs). However, hand pruning is expensive and is not always effective, and efficacy of PGRs can depend on cultural practices, environmental conditions, irrigation, cultivar, and rate. Therefore, the objective of these experiments was to evaluate the effect of dikegulac sodium applied to pruned or unpruned ‘Limelight’ hardy hydrangea (Hydrangea paniculata). Plants were grown at two locations, Tennessee (TN) and Mississippi (MS). The pruned treatment consisted of hand pruning, leaving three nodes followed by applications of dikegulac sodium (400, 800, or 1600 ppm). Applications of dikegulac sodium to pruned or unpruned plants were made the same day using a carbon dioxide backpack sprayer. There were two additional control treatments: hand-pruned untreated (hand-pruned) and unpruned untreated (untreated). Plants were grown outdoors under full sun in TN and under 40% shade in MS. Data were collected at the close of the experiment on the number of branches over 1 inch, final growth index (FGI), floral attributes, branch symmetry, and phytotoxicity. At both locations, pruned and unpruned plants treated with 800 or 1600 ppm dikegulac sodium had more branches than the hand-pruned and unpruned plants. Flower number and size tended to be greater for unpruned plants than pruned plants. Phytotoxicity was observed at 2 and 6 weeks after treatment (WAT). For plants grown in TN, symptoms were more pronounced on plants following treatment with 800 (pruned plants) and 1600 ppm (pruned and unpruned) dikegulac sodium compared with the untreated plants. There were no visible phytotoxicity symptoms at 6 WAT for plants grown in MS, regardless of treatment.

Full access

The goal of this experiment was to evaluate the efficiency of foliar application of dikegulac sodium on increasing the lateral branching of ‘Merritt’s Supreme’ bigleaf hydrangea (Hydrangea macrophylla). Plants were grown in greenhouses at two locations including El Paso, TX and Kosciusko, MS. Two weeks before application of dikegulac sodium, half of plants were hand-pinched leaving two nodes. Foliar spray of dikegulac sodium at 400, 800, or 1600 mg·L−1 was then applied to pinched and unpinched plants. There were two additional control treatments: pinched or unpinched without application of dikegulac sodium. Data were collected at 2 weeks, 6 weeks, 80 days, and 10 months after treatments. Bigleaf hydrangea plants exhibited severe phytotoxicity including interveinal chlorosis or bleaching of new growth at 2 weeks after application of dikegulac sodium with more pronounced symptoms at higher dikegulac sodium concentrations. The severity of phytotoxicity symptoms became less significant at 6 weeks after treatment. The effect of dikegulac sodium on bigleaf hydrangea plant growth, number of branches, and number of flowers depended on both locations and dosages. In El Paso, TX, dikegulac sodium at 800 or 1600 mg·L−1 inhibited bigleaf hydrangea plant growth at 6 weeks and 80 days after treatment, and this effect disappeared at 10 months after treatment. Dikegulac sodium at all tested dosages doubled or tripled the number of branches of pinched or unpinched bigleaf hydrangea, respectively, at 80 days after treatment. At 10 months after treatment, the number of branches and flowers of bigleaf hydrangea plants tended to increase, but was insignificant. In Kosciusko, MS, dikegulac sodium at 1600 mg·L−1 reduced the plant growth at 6 weeks after treatment. This treatment increased the number of branches and flowers of unpinched plants by 196% and 95% and pinched plants by 53% and 31%, respectively, at 10 months after treatment. Dikegulac sodium application could be used to increase number of branches and flowers and produce compact ‘Merritt’s Supreme’ bigleaf hydrangea. However, the efficacy varied with environmental conditions.

Free access

Red firespike (Odontonema strictum) is an ornamental shrub with potential for use as a flowering potted plant due to its dark green foliage and attractive red flower spikes. To stimulate branching and improve quality of red firespike, foliar spray applications of dikegulac sodium (DS) and benzyladenine (BA) and hand pinching were evaluated across two seasons (Spring and Summer 2014). There were three pinching treatments: one, two, or three pinches. Plant growth regulators (PGRs) were applied at 400, 800, 1600, or 2400 ppm DS or 600, 1000, 1250, or 1750 ppm BA. Both studies included an untreated control. Red firespike treated with all concentrations of BA and 1600 and 2400 ppm DS had increased branching compared with the control, except 1000 ppm BA in Expt. 1. Pinching did not affect the number of branches. Dikegulac sodium at 1600 and 2400 ppm and all concentrations of BA resulted in shorter plants than the control. Phytotoxicity was observed in plants treated with 1600 or 2400 ppm DS. In both experiments, DS at 1600 and 2400 ppm had the least plant dry weight compared with the control. Treatment with BA at 1750 ppm resulted in greatest leaf area compared with control. Dikegulac sodium at 800 ppm increased the number of flowers compared with control. Pinching and BA did not affect number of inflorescences. All concentrations of BA and DS delayed flowering, except 1000 ppm BA. Plants treated with 800, 1600, and 2400 ppm DS had shorter inflorescences compared with control plants. Benzyladenine decreased the length of the inflorescence at high concentrations, 1250 and 1750 ppm. Pinching treatments did not affect inflorescence length.

Free access

A study was conducted to determine whether nitrogen (N) application rate and fertilizer form are related to cold tolerance of buds and stems using container-grown ‘Summit’ green ash (Fraxinus pennsylvanica) trees. Trees were grown with different rates of N from either urea formaldehyde (UF) or a controlled-release fertilizer (CRF) containing ammonium nitrate during the 2006 growing season; and growth, N and carbon (C) composition, and cold tolerance were evaluated in Oct. 2006, Dec. 2006, and Feb. 2007 by assessing the lowest survival temperature (LST) of stem and bud tissues on current season (2006) stems. Both fertilizer type and rate influenced the bud and stem LSTs. The influence of fertilizer rate was most evident on midwinter (December) stem LSTs and the influence of fertilizer type was observed in bud and stem LSTs during the deacclimation period in February. Higher LSTs were associated with higher N concentrations and lower C/N ratios; however, stems and buds of trees fertilized with UF were more cold-tolerant (had lower LSTs) than stems and buds on trees fertilized with CRF. Fertilizer type resulted in several differences in N and C translocation and metabolism during the fall and winter. Our results indicate trees with a similar N status are able to withstand different levels of cold depending on the rate of N and the type or form of fertilizer used during production. This may have to do with differences in how trees metabolize the different fertilizer forms, where and when the N is stored, and how it is remobilized in the spring, especially in relation to C metabolism.

Full access

A study was conducted to determine whether the nitrogen (N) status of nursery-grown green ash (Fraxinus pennsylvanica ‘Summit’) trees in the autumn is related to bud necrosis during the following spring. In 2005, different rates of N from urea formaldehyde (UF) or a controlled-release fertilizer (CRF) containing ammonium nitrate were applied during the growing season to green ash trees and leaves were sprayed or not with urea in the autumn. Biomass and N content was determined in Autumn 2005 and Spring 2006, and stem biomass and bud necrosis were evaluated for necrosis in Spring 2006. Trees with low N content in Autumn 2005 grew less in Spring 2006 but bud necrosis was more prevalent on trees grown at the highest N rate. Compared with trees grown with a similar amount of N from UF, growing trees with CRF altered N allocation in 2005 and the relationship between carbon (C) and N dynamics (import, export, and metabolism) in stems in 2006. Additionally, trees grown with CRF had less total shoot biomass in Spring 2006 and more bud failure than trees grown with a similar N rate from UF. Significant relationships between bud failure and N status and C/N ratios in different tissues suggest that a combination of tree N status and the balance between N and C in certain tissues plays a role in the occurrence of bud failure of green ash trees in the spring.

Full access

Colored shadecloths are used in the production of vegetable, fruit, and ornamental crops to manipulate the light spectrum and to induce specific plant physiological responses. The influence of three colored shadecloths (red, blue, and black) with 50% shade and a no-shade control on the production of two lettuce (Lactuca sativa) cultivars [Two Star (green-leaf) and New Red Fire (red-leaf)] and snapdragon (Antirrhinum majus) was investigated. Use of shadecloth increased plant growth indices of lettuce and total length of snapdragon flower stems (at the first harvest) compared with no-shade control. Red shadecloth resulted in longer flower stems of snapdragon (at the second harvest) than black and blue shadecloths and no-shade control. However, shadecloth delayed blooming of snapdragon for 1 week compared with no-shade control. Stomatal conductance (g s) and leaf transpiration rate of both lettuce cultivars and photosynthetic rate and transpiration rate of snapdragon were decreased in response to shadecloth treatments. All shadecloths decreased health beneficial flavonoids (luteolin/quercetin glucuronide and quercetin malonyl concentrations for both lettuce cultivars and cyanidin glucoside in red-leaf lettuce). The two lettuce cultivars varied in their phenolic compounds, with the green-leaf ‘Two Star’ having higher quercetin glucoside and caftaric acid than red-leaf ‘New Red Fire’, whereas ‘New Red Fire’ had higher concentrations of chlorogenic acid, luteolin/quercetin glucuronide, and quercetin malonyl. Shadecloths reduced substrate temperature and photosynthetically active radiation (PAR) to about half of full sunlight compared with no-shade control, which may have contributed to reduced g s and leaf transpiration (for lettuce and snapdragon), decreased phenolic compounds in lettuce, and delayed flowering of snapdragon.

Full access

Nine commercially available biocontainers and a plastic control were evaluated at Fayetteville, AR, and Crystal Springs, MS, to determine the irrigation interval and total water required to grow a crop of ‘Cooler Grape’ vinca (Catharanthus roseus) with or without the use of plastic shuttle trays. Additionally, the rate at which water passed through the container wall of each container was assessed with or without the use of a shuttle tray. Slotted rice hull, coconut fiber, peat, wood fiber, dairy manure, and straw containers were constructed with water-permeable materials or had openings in the container sidewall. Such properties increased the rate of water loss compared with more impermeable bioplastic, solid rice hull, and plastic containers. This higher rate of water loss resulted in most of the biocontainers having a shorter irrigation interval and a higher water requirement than traditional plastic containers. Placing permeable biocontainers in plastic shuttle trays reduced water loss through the container walls. However, irrigation demand for these containers was still generally higher than that of the plastic control containers.

Free access

The green industry has identified the use of biodegradable containers as an alternative to plastic containers as a way to improve the sustainability of current production systems. Field trials were conducted to evaluate the performance of four types of 1-gal nursery biocontainers [keratin (KR), wood pulp (WP), fabric (FB), and coir fiber (Coir)] in comparison with standard black plastic (Plastic) containers on substrate temperature, water use, and biomass production in aboveground nurseries. Locations in Kentucky, Michigan, Mississippi, and Texas were selected to conduct experiments during May to Oct. 2012 using ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla) and ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) in 2013. In this article, we were focusing on the impact of alternative container materials on hourly substrate temperature variations and plant growth. Substrate temperature was on an average higher (about 6 °C) in Plastic containers (about 36 °C) compared with that in WP, FB, and Coir containers. However, substrate temperature in KR containers was similar to Plastic. Substrate temperature was also influenced by local weather conditions with the highest substrate temperatures recorded in Texas followed by Kentucky, Mississippi, and Michigan. Laboratory and controlled environment trials using test containers were conducted in Kentucky to evaluate sidewall porosity and evaporation loss to confirm field observations. Substrate temperature was similar under laboratory simulation compared with field studies with the highest substrate temperature observed in Plastic and KR, intermediate in WP and lowest in FB and Coir. Side wall temperature was higher in Plastic, KR, and FB compared with WP and Coir, while side wall water loss was greatest in FB, intermediate in WP and Coir, and lowest in plastic and KR. These observations suggest that the contribution of sidewall water loss to overall container evapotranspiration has a major influence on reducing substrate temperature. The porous nature of some of the alternative containers increased water use, but reduced heat stress and enhanced plant survival under hot summer conditions. The greater drying rate of alterative containers especially in hot and dry locations could demand increased irrigation volume, more frequent irrigation, or both, which could adversely affect the economic and environmental sustainability of alternative containers.

Free access