Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Gladis M. Zinati x
  • HortTechnology x
Clear All Modify Search

Conventional agricultural systems increase per-area food production, but deplete natural resources and degrade both crop and environmental quality. Many of these concerns are addressed by sustainable agricultural systems, integrated pest management, biocontrol, and other alternative systems. Environmental and social concerns have escalated the need for alternative agricultural systems in the last decade. One alternative, the organic farming system, substitutes cultural and biological inputs for synthetically made fertilizers and chemicals for crop nutrition and pest management. Practices used for crop and pest management are similar during transition from conventional to organic farming systems, but produce is not certified to be organic during the transition period. During the transition from conventional to organic farming, growers may face pest control difficulties and lower yields when conventional practices are abandoned. The objectives of this paper are to 1) give an overview of the reasons for converting to organic farming and the challenges that growers face during the transition period, 2) outline some potential strategies for crop, soil, and pest management, and 3) list guidelines and recommendations for pest management during the transition to organic farming. Implementation of crop and pest management practices depends on geographical location, climate, available onsite resources, and history of the land. During transition, growers rely on cultural mechanisms and on organic and mineral sources to improve soil fertility, to build a population of natural enemies to suppress pest populations. Pest management practices during the transition period that reduce pest populations to economically manageable levels include crop rotation, cultivation, cover crops, mulches, crop diversification, resistant varieties, and insect traps. These practices also enrich the soil biota and increase crop yields before produce is certified organically grown.

Full access

A question/answer discussion session was conducted at the conclusion of the workshop “Pest Management During Transition to Organic Farming Systems”. The following categories were used to summarize the discussion: 1) questions and answers related to cultural and biological practices and their effects under various climatic conditions, 2) recommendations for pest management, and 3) future research needs. While many tactics are available, selecting and adopting the most suitable approach depends on soil conditions of the land, location, and the availability of the resources at affordable prices. Definitely, more research studies are needed on 1) weed seed banks under various cultural practices at different regions, 2) relationships between soil nutrients, and pest control, and 3) approaches to increase profitability of organic production during the transition period.

Full access

The discovery of disease suppression in certain bark composts increased the interest in using compost as growing substrate to control root rot diseases caused by Phytophthora cinnamomi. Disease suppression mechanisms include antibiosis, competition, hyperparasitism, and induced systemic resistance. Although abiotic factors may influence disease suppression, the latter is often based on microbial interactions—the two common mechanisms being general for pythium (Pythium spp.) and phytophthora root rot (Phytophthora spp.) and specific for rhizoctonia (Rhizoctonia solani). The discovery of disease suppression agents in compost led to the development of biocontrol agent-fortified compost during the last decade of the 20th century. The suggested recommendations for future research and extension outreach may include 1) development of methods to manage bacterial and viral diseases through the use of compost; 2) exploration of the potential effects of fortified compost on insect pests suppression; 3) improvement of inoculation methods of composts with biocontrol agents to produce consistent levels of disease suppression at the commercial scale; 4) development of effective fortified compost teas for suppressing foliar diseases; 5) education of compost producers on methods of production of fortified compost that suppress specific diseases; and 6) education of end-users on uses of fortified compost and its by-products.

Full access