Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Gerald J. Holmes x
  • HortScience x
Clear All Modify Search

Cucurbit downy mildew caused by the oomycete Pseudoperonospora cubensis (Berk. And Curt) Rostov is a major disease of cucumber (Cucumis sativus L.) (Palti and Cohen, 1980) globally. Chemical control of downy mildew is necessary to achieve high yields in the absence of adequate host plant resistance. Most of the currently grown cultivars have some resistance to downy mildew. Before the resurgence of the disease in 2004, host plant resistance was sufficient to control the disease without fungicide use, and downy mildew was only a minor problem on cucumber. There are currently no cultivars that show resistance at a level equal to that observed before 2004. However, differences in resistance exist among cultivars, ranging from moderately resistant to highly susceptible. In this study, we evaluated the disease severity and yield of four cucumber cultivars that differed in disease resistance and were treated with fungicide programs representing a range of efficacy levels. The experiment was a split plot design with six replications and four years. Disease was evaluated as chlorosis, necrosis, and reduction in plant size on a 0 to 9 scale. Cultigen had a large effect in all four years. Fungicide has a smaller effect on resistance component traits and a larger effect on yield traits. The effects of cultivar resistance and fungicides appear to be additive until a threshold where maximum yield is reached. Highly resistant cultigens such as PI 197088 required only the least effective fungicides to achieve highest yields, whereas moderately resistant cultigens required a more effective fungicide to reach a similar level of yield. Susceptible cultigens did not achieve high yield even with the most effective fungicide treatments. It is likely that, even as highly resistant cultivars are released, growers will need to continue a minimal fungicide program to achieve maximum yield.

Free access

‘Covington’ is an orange-fleshed, smooth-skinned, rose-colored, table-stock sweetpotato [Ipomoea batatas (L.) Lam.] developed by North Carolina State University (NCSU). ‘Covington’, named after the late Henry M. Covington, an esteemed sweetpotato scientist at North Carolina State, was evaluated as NC98-608 in multiple state and regional yield trials during 2001 to 2006. ‘Covington’ produces yields equal to ‘Beauregard’, a dominant sweetpotato variety produced in the United States, but it is typically 5 to 10 days later in maturity. ‘Covington’ typically sizes its storage roots more evenly than ‘Beauregard’ resulting in fewer jumbo class roots and a higher percentage of number one roots. Total yields are similar for the two clones with the dry matter content of ‘Covington’ storage roots typically being 1 to 2 points higher than that of ‘Beauregard’. ‘Covington’ is resistant to fusarium wilt [Fusarium oxysporum Schlect. f.sp. batatas (Wollenw.) Snyd. & Hans.], southern root-knot nematode [Meloidogyne incognita (Kofoid & White 1919) Chitwood 1949 race 3], and moderately resistant to streptomyces soil rot [Streptomyces ipomoeae (Person & W.J. Martin) Wakswan & Henrici]. Symptoms of the russet crack strain of Sweet Potato Feathery Mottle Virus have not been observed in ‘Covington’. The flavor of the baked storage roots of ‘Covington’ has been rated as very good by standardized and informal taste panels and typically scores as well or better in this regard when compared with ‘Beauregard’.

Free access