Search Results
You are looking at 1 - 10 of 13 items for :
- Author or Editor: Genhua Niu x
- HortTechnology x
Late-season height control of poinsettia (Euphorbia pulcherrima) is difficult since most chemical growth retardants adversely reduce bract size when applied after first bract color. Paclobutrazol (Bonzi) controls stem elongation late in poinsettia crop development but can excessively reduce bract size if improperly applied. Two experiments were conducted to quantify how paclobutrazol application influenced height and bract area of `Freedom' poinsettia. In the first experiment, paclobutrazol was applied at 1 mg·L-1 (ppm) in 118-mL (4.0-fl oz) volumes per pot [(a.i.) 0.12 mg/pot (28,350 mg = 1.0 oz)] as a drench to a new group of plants weekly from the initiation of short days until 1 week before anthesis. Maximum reduction in height and bract area was obtained when paclobutrazol was applied immediately after short days, and the response to paclobutrazol decreased as application time was increasingly delayed toward anthesis. In the second experiment, paclobutrazol was applied weekly after first bract color as either a drench or subapplication at various concentrations. Plant height and bract area were reduced by 23% when 2 mg·L-1 [(a.i.) 0.24 mg/pot) paclobutrazol was applied through subapplication at first color. The effects of paclobutrazol on height and bract area reduction decreased as application time was progressively delayed. Concentrations lower than 1 mg·L-1 had no significant effect on height or bract area reduction, regardless of application time or method. Generally, the reduction in height and bract area was larger when paclobutrazol was applied through subapplication. The combined results from both experiments indicate that paclobutrazol drench applications after flower initiation concomitantly reduce plant height (internode extension) and bract area. Therefore, drench applications should be delayed as long as possible to limit reduction in bract size.
The goal of this experiment was to evaluate the efficiency of foliar application of dikegulac sodium on increasing the lateral branching of ‘Merritt’s Supreme’ bigleaf hydrangea (Hydrangea macrophylla). Plants were grown in greenhouses at two locations including El Paso, TX and Kosciusko, MS. Two weeks before application of dikegulac sodium, half of plants were hand-pinched leaving two nodes. Foliar spray of dikegulac sodium at 400, 800, or 1600 mg·L−1 was then applied to pinched and unpinched plants. There were two additional control treatments: pinched or unpinched without application of dikegulac sodium. Data were collected at 2 weeks, 6 weeks, 80 days, and 10 months after treatments. Bigleaf hydrangea plants exhibited severe phytotoxicity including interveinal chlorosis or bleaching of new growth at 2 weeks after application of dikegulac sodium with more pronounced symptoms at higher dikegulac sodium concentrations. The severity of phytotoxicity symptoms became less significant at 6 weeks after treatment. The effect of dikegulac sodium on bigleaf hydrangea plant growth, number of branches, and number of flowers depended on both locations and dosages. In El Paso, TX, dikegulac sodium at 800 or 1600 mg·L−1 inhibited bigleaf hydrangea plant growth at 6 weeks and 80 days after treatment, and this effect disappeared at 10 months after treatment. Dikegulac sodium at all tested dosages doubled or tripled the number of branches of pinched or unpinched bigleaf hydrangea, respectively, at 80 days after treatment. At 10 months after treatment, the number of branches and flowers of bigleaf hydrangea plants tended to increase, but was insignificant. In Kosciusko, MS, dikegulac sodium at 1600 mg·L−1 reduced the plant growth at 6 weeks after treatment. This treatment increased the number of branches and flowers of unpinched plants by 196% and 95% and pinched plants by 53% and 31%, respectively, at 10 months after treatment. Dikegulac sodium application could be used to increase number of branches and flowers and produce compact ‘Merritt’s Supreme’ bigleaf hydrangea. However, the efficacy varied with environmental conditions.
Market researchers have found that nursery and greenhouse production practices that reduce plastic use can increase consumer interest. However, there are broader crop performance, production efficiency, and environmental factors that must be considered before adopting containers made with alternative materials. This review highlights current commercially available alternative containers and parent materials. In addition, findings from recent and ongoing nursery, greenhouse, and landscape trials are synthesized, identifying common themes, inconsistencies, research gaps, and future research needs.
Marigolds (Tagetes sp.) are ornamental plants with fine-textured, dark green foliage, and yellow, orange, or bicolored flowers. The relative salt tolerance of eight marigolds [‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, ‘Taishan Orange’, and ‘Taishan Yellow’ african marigold (Tagetes erecta); ‘Hot Pak Gold’, ‘Hot Pak Orange’, and ‘Hot Pak Yellow’ french marigold (Tagetes patula)] was evaluated in a greenhouse experiment. Plants were irrigated weekly with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 3.0 or 6.0 dS·m−1 (EC 3 or EC 6). Marigold plants began to show foliar salt damage (leaf burn and necrosis) at 6 weeks after the initiation of treatment. At harvest (9 weeks after the initiation of treatment), ‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, and ‘Taishan Yellow’ plants exhibited severe foliar salt damage with visual scores less than 2 (on a scale of 0 to 5, with 0 = dead and 5 = excellent with no foliar salt damage) in EC 6. In the same treatment, ‘Hot Pak Gold’ and ‘Taishan Orange’ plants all died and only one of nine ‘Hot Pak Orange’ and ‘Hot Pak Yellow’ plants survived. In EC 3, all cultivars had slight or minimal foliar salt damage with visual scores ≈4 with the exception of Taishan Gold and Taishan Orange plants that showed moderate foliar damage with a visual score of 2.3 and 2.1, respectively. Treatment EC 3 reduced the flower number of ‘Discovery Orange’, ‘Discovery Yellow’, ‘Hot Pak Gold’, and ‘Hot Pak Yellow’ by 52%, 28%, 50%, and 30%, respectively, whereas EC 6 decreased the flower number of ‘Discovery Orange’ and ‘Discovery Yellow’ by 48% and 52%, respectively. In addition, both EC 3 and EC 6 did not reduce total dry weight (DW) of any cultivars, except Hot Pak Yellow and Taishan Yellow. In conclusion, all marigold cultivars are moderately sensitive to salt. ‘Discovery Orange’, ‘Taishan Yellow’, ‘Discovery Yellow’, and ‘Taishan Gold’ were more tolerant than ‘Hot Pak Gold’, ‘Hot Pak Orange’, ‘Hot Pak Yellow’, and ‘Taishan Orange’.
Scarcity and competition for good quality and potable water resources are limiting their use for urban landscape irrigation, with several nontraditional sources being potentially available for these activities. Some of these alternative sources include rainwater, stormwater, brackish aquifer water, municipal reclaimed water (MRW), air-conditioning (A/C) condensates, and residential graywater. Knowledge on their inherent chemical profile and properties, and associated regional and temporal variability, is needed to assess their irrigation quality and potential short- and long-term effects on landscape plants and soils and to implement best management practices that successfully deal with their quality issues. The primary challenges with the use of these sources are largely associated with high concentrations of total salts and undesirable specific ions [sodium (Na), chloride (Cl), boron (B), and bicarbonate (HCO3 −) alkalinity]. Although the impact of these alternative water sources has been largely devoted to human health, plant growth and aesthetic quality, and soil physicochemical properties, there is emergent interest in evaluating their effects on soil biological properties and in natural ecosystems neighboring the urban areas where they are applied.
Southern U.S. states such as Texas experience high temperatures and intense solar radiation during the summer production season. Use of shadecloth is common in Spain and other Mediterranean countries and is becoming popular with homeowners or small-acreage farmers in Texas. Little information is available on the applicability of using shadecloth on tomato (Solanum lycopersicum) and chili pepper (Capsicum annuum) in the warm climate of Texas. The effects of two shade nets differing in shading intensity on growth, chlorophyll fluorescence, and photosynthesis of ‘Celebrity’ tomato and ‘Sweet Banana’ chili pepper was investigated from May to Aug. 2014. Plants were grown in 50% shade, 70% shade, or full sun. Compared with the unshaded control, tomato grown in 50% shade had similar yield and shoot fresh and dry weight and less photochemical stress. The 50% shade reduced number and weight of unmarketable tomato fruit. Similar results were obtained with chili pepper except for lower numbers of marketable fruit. The 70% shade significantly reduced yield parameters of both tomato and chili pepper. Both 50% and 70% shadecloth reduced leaf temperatures of tomato and chili pepper with variable results in June and July. Growth index [(height + width 1 + width 2) ÷ 3] of tomato and chili pepper was the highest with 50% shade, the lowest with full sun, and intermediate with 70% shade. The maximum net photosynthetic rates (Pn) of tomato determined from a Pn to light response curve supported the results on growth and yield. However, the maximum Pn of chili pepper was higher in full sun treatment compared with 50% or 70% shade. The latter two were almost identical. This one growing season study indicated that shading at 50% benefits tomato and chili pepper production in west Texas by reducing heat stress; however, a shading percentage below 50% may be better.
The effects of storage temperature and shoot preparation of elephant ears (Colocasia antiquorum `Illustris') were examined to determine how to successfully store plants prior to greenhouse forcing. A series of experiments were conducted that provided storage temperatures of 4, 7, 10, 13, or 16 °C (39.2, 44.6, 50.0, 55.4, or 60.8 °F), and plants were placed into storage with the shoots uncut or cut to 3.0 cm (1.18 inches) above the surface of the growing medium. The storage duration ranged from 40 to 49 days. All plants stored at 4 or 7 °C died. Plant survival was 89% to 100% at 10 °C, while plant survival was 100% at 13 or 16 °C. Shoot emergence and plant growth was faster following storage at 13 and 16 °C, than storage at 10 °C. Storage at 16 °C resulted in leaf growth occurring during storage, which was undesirable. Removing shoots prior to storage had no effect on plant survival and performance during forcing. A fungicide drench with iprodione immediately prior to storage did not improve plant survival. This study suggests that 13 °C is near the base temperature for leaf development of elephant ears, thus the plants survive at this temperature with no growth occurring. Shoot removal prior to storage is recommended in order to optimize storage room space.
The green industry has identified the use of biodegradable containers as an alternative to plastic containers as a way to improve the sustainability of current production systems. Field trials were conducted to evaluate the performance of four types of 1-gal nursery biocontainers [keratin (KR), wood pulp (WP), fabric (FB), and coir fiber (Coir)] in comparison with standard black plastic (Plastic) containers on substrate temperature, water use, and biomass production in aboveground nurseries. Locations in Kentucky, Michigan, Mississippi, and Texas were selected to conduct experiments during May to Oct. 2012 using ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla) and ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) in 2013. In this article, we were focusing on the impact of alternative container materials on hourly substrate temperature variations and plant growth. Substrate temperature was on an average higher (about 6 °C) in Plastic containers (about 36 °C) compared with that in WP, FB, and Coir containers. However, substrate temperature in KR containers was similar to Plastic. Substrate temperature was also influenced by local weather conditions with the highest substrate temperatures recorded in Texas followed by Kentucky, Mississippi, and Michigan. Laboratory and controlled environment trials using test containers were conducted in Kentucky to evaluate sidewall porosity and evaporation loss to confirm field observations. Substrate temperature was similar under laboratory simulation compared with field studies with the highest substrate temperature observed in Plastic and KR, intermediate in WP and lowest in FB and Coir. Side wall temperature was higher in Plastic, KR, and FB compared with WP and Coir, while side wall water loss was greatest in FB, intermediate in WP and Coir, and lowest in plastic and KR. These observations suggest that the contribution of sidewall water loss to overall container evapotranspiration has a major influence on reducing substrate temperature. The porous nature of some of the alternative containers increased water use, but reduced heat stress and enhanced plant survival under hot summer conditions. The greater drying rate of alterative containers especially in hot and dry locations could demand increased irrigation volume, more frequent irrigation, or both, which could adversely affect the economic and environmental sustainability of alternative containers.
The performance of biocontainers as sustainable alternatives to the traditional petroleum-based plastic containers has been researched in recent years due to increasing environmental concern generated by widespread plastic disposal from green industry. However, research has been mainly focused on using biocontainers in short-term greenhouse production of bedding plants, with limited research investigating the use of biocontainers in long-term nursery production of woody crops. This project investigated the feasibility of using biocontainers in a pot-in-pot (PIP) nursery production system. Two paper (also referred as wood pulp) biocontainers were evaluated in comparison with a plastic container in a PIP system for 2 years at four locations (Holt, MI; Lexington, KY; Crystal Springs, MS; El Paso, TX). One-year-old river birch (Betula nigra) liners were used in this study. Results showed that biocontainers stayed intact at the end of the first growing season, but were penetrated to different degrees after the second growing season depending on the vigor of root growth at a given location and pot type. Plants showed different growth rates at different locations. However, at a given location, there were no differences in plant growth index (PGI) or plant biomass among plants grown in different container types. Daily water use (DWU) was not influenced by container type. Results suggest that both biocontainers tested have the potential to be alternatives to plastic containers for short-term (1 year) birch production in the PIP system. However, they may not be suitable for long-term (more than 1 year) PIP production due to root penetration at the end of the second growing season.