Search Results
A system was designed for measuring the CO2 exchange rates [net photosynthetic rate (Pn) and dark respiration rate] of in vitro plantlets in situ (in the vessel with natural ventilation). The system, excluding gas cylinders, was placed in a growth chamber so that the desired photosynthetic photon flux (PPF) and temperature could be maintained during the measurement. The CO2 concentration inside the culture vessel (Ci) was indirectly controlled by controlling the CO2 concentration outside the vessel (Co). The Pn of the plantlets was estimated based on the measured Ci and Co at steady state using a gas chromatograph according to the method described by Fujiwara et al. (1987). The performance of the system was demonstrated by measuring the in situ Pn of sweetpotato [Ipomoea batatas (L.) Lam., cv. Beniazuma] and tomato (Lycopersicon esculentum Mill., cv. Hana Queen) plantlets in vitro under a range of CO2 concentrations and PPF. The photosynthetic parameters of the Pn model (Niu and Kozai, 1997) for the plantlets were then estimated based on the measured Pn. The preliminary measurements demonstrated the potential application of the system.
Use of recycled water to irrigate urban landscapes may be inevitable, because the freshwater supply has been diminishing and the population continues to grow in the arid and semiarid southwestern United States. However, little information exists on the performance of landscape plants irrigated with nonpotable water. Two greenhouse studies were conducted during the summer and the fall to characterize the relative salt tolerance of five herbaceous perennials by irrigating the plants with a saline solution at an electrical conductivity (EC) of 0.8 dS·m–1 (tap water), 2.0 dS·m–1, or 4.0 dS·m–1. In the summer study, after 10 weeks of treatment, Achillea millefolium L., Gaillardia aristata Foug., and Salvia coccinea Juss ex J. had an aesthetically acceptable appearance for landscape performance (visual quality scores of 4 points or more), whereas Agastache cana (Hook.) Woot. & Standl. and Echinacea purpurea (L.) Moench had relatively low tolerance to salinity. Dry weight of shoots of A. millefolium, A. cana, and G. arstata was lower at elevated salinity levels. In the fall study, A. millefolium, E. purpurea, G. arstata, and S. coccinea had acceptable growth and visual quality at elevated salinity levels, whereas A. cana had lower quality and reduced growth. Dry weight of shoots was lower in G. arstata and A. millefolium at an EC of 2.0 dS·m–1 or 4.0 dS·m–1. Leaf osmotic potential of all species in the summer experiment was significantly lower at higher salinity compared with the control. In the fall experiment, leaf osmotic potential in A. millefolium, E. purpurea, and G. aristata at 4 dS·m–1 was lower compared with lower salinity treatment and the control. Leaf osmotic potential in the fall was higher than that of the same species at the same salinity level in the summer experiment, indicating that plants in the fall were less stressed than in the summer. Combined the results from both experiments, the authors concluded that A. millefolium, G. arstata, and S. coccinea had a relatively high salt tolerance (as much as 4 dS·m–1 of irrigation water under greenhouse conditions) among the tested species, whereas A. cana and E. purpurea were not tolerant to salt and should not be irrigated with low-quality water.
Gaillardia aristata Foug. is a hardy, drought-tolerant perennial found throughout much of the United States. Little information exists on the salt tolerance of this plant when grown in various growing media. A study was conducted to characterize the response of G. aristata to three salinity levels (0.8, 2.0, or 4.0 dS/m) and four growing media: 1) 100% perlite; 2) 1 perlite: 1 Sunshine mix No. 4 (v/v); 3) 100% Sunshine mix No. 4; or 4) 1 Sunshine mix No. 4: 1 composted mulch (v/v). The type of medium influenced the dry weight of roots but not shoots, while salinity significantly influenced the dry weight of both shoots and roots. The dry weight of shoots was higher in plants irrigated with tap water (0.8 dS/m) compared to those irrigated with saline solution at 2.0 or 4.0 dS/m except for those grown in 100% Sunshine mix. The ratio of root to shoot dry weight was not influenced by salinity, but was highest in the plants grown in 100% perlite. Both medium and salinity affected plant height. Elevated salinity reduced plant height. Plants were taller when grown in 100% perlite and in 1 Sunshine mix: 1 composted mulch. However, plants had fewer lateral shoots when grown in 100% perlite or 1 Sunshine mix: 1 composted mulch. Some of the flower buds aborted when grown in 100% Sunshine mix or 1 perlite: 1 Sunshine mix compared to none in plants grown in 100% perlite or 1 Sunshine mix: 1 composted mulch. These results indicate that growth and morphology of G. aristata were affected by not only salinity, but also the type of medium.
Live oak trees raised from acorns are highly non-uniform and many produce numerous undesirable rhizomic shoots. The objectives of this study were to 1) compare the growth rates between (Quercus virginiana Mill.) trees from seed and cutting in four production systems and 2) determine if trees from cuttings produce rhizomic shoots. Rhizomic shoot cuttings 25–30 cm long were taken from a single tree about 50 years old in late Aug. 1990, rooted, and planted in 2.6-L pots after 2 months. During the same week, acorns were collected from the same tree and germinated. All trees were planted into 13-L pots in July 1991 and then to a field in July 1992. Trees from both sources were planted either directly in the ground, in 36.6- or 45.7-cm-diameter polypropylene fabric bags buried in the ground, or in 13-L pots on the ground. Trunk circumference 10 cm above the soil line was roughly measured yearly between 1992 and 1999. Initially, trees from cuttings grew slightly slower than seedlings, having a smaller trunk circumference, diameter, and cross-sectional area. These differences diminished and all trees had similar circumferences after 1996. In 1992, trees in 36.6-cm bags and pots had more growth than trees in the ground. In 1993, trees in pots had better growth than those in the ground. After 1993, all trees had similar circumferences until the end of this study, probably due to roots extending beyond the bags and pots into the surrounding soil. About one-third of the seedling trees produced rhizomic shoots, whereas none of the trees from cuttings did. The rhizomic shoots of trees in pots were contained within the pot and none from the ground. Another significance of this research is that the cloned trees from cuttings were extremely uniform in growth habit and form.
Texas mountain laurel (Sophora secundiflora) is a native shrub tolerating drought, heat, windy conditions, and alkaline or wet soils. However, its availability is somewhat low and little information is available on nutrient requirement and other culture information. Two greenhouse experiments were conducted to quantify the responses of Texas mountain laurel to different forms and rates of nitrogen (N) fertilizer. In Expt. 1, 1-year old seedlings were treated for 194 days with three NO3:NH4 ratios at 25:75, 50:50, and 75:25 and two rates of N at 100 and 200 mg·L−1 in a factorial design. There was no interaction between the N rate and form on any growth parameters. Nitrogen form did not significantly affect shoot dry weight, root dry weight, root–to-shoot ratio, or the total dry weight. There was no significant difference between N rate of 100 and 200 mg·L−1 on root dry weight, root-to-shoot ratio, or the total dry weight. The shoot dry weight of Texas mountain laurel fertilized with 100 mg·L−1 was higher compared with that of the plants fertilized at 200 mg·L−1. The reduced shoot dry weight at N of 200 mg·L−1 was the result of the higher substrate salinity. In Expt. 2, seedlings were fertilized with five N rates (50, 100, 150, 200, and 250 mg·L−1) for 203 days. Plants watered with 150, 200, and 250 mg·L−1 were taller than those fertilized with 50 mg·L−1. The shoot height of plants watered with 100 mg·L−1 was only significantly different from 50 mg·L−1. For rapid growth of Texas mountain laurel, a N rate range of ≈150 mg·L−1 was recommended supplied with a combination of NO3-N and NH4-N in the ratios of 0.3 to 3.0.
Excessive salinity in soil and irrigation water in combination with waterlogging in coastal regions can significantly reduce the productivity of many agricultural crops. To evaluate the plant growth responses to simulated seawater (SSW) flooding, seedlings of 10 vegetables (broccoli, chinese cabbage, chinese greens, cucumber, eggplant, kale, radish, ‘Red Crunchy’ radish, spinach, and tomato) were flooded with SSW at electrical conductivity (EC) of 44.0 ± 1.3 dS·m−1 or tap water at EC of 0.8 ± 0.1 dS·m−1 for 24 hours and grown subsequently for 2 weeks in a greenhouse. Chinese greens and cucumber plants died shortly after flooding with SSW, whereas other vegetables exhibited various degrees of visible salt damage. Chinese cabbage suffered the strongest reduction, whereas spinach, tomato, and eggplant exhibited the least decrease in dry weight (DW) due to SSW flooding in comparison with their perspective control. Two weeks after flooding treatment with SSW, net photosynthetic rate of broccoli, kale, spinach, and tomato was reduced by 43% to 67%, transpiration rate by 35% to 66%, and stomatal conductance (g S) by 51% to 82%. In summary, spinach, eggplant, and tomato were the most tolerant, whereas chinese cabbage, chinese greens, and cucumber were the least tolerant to SSW flooding.
To provide more species for landscapes where poor-quality irrigation water is used, salt tolerance of commonly used landscape plants should be characterized. Nine ornamental species, including six herbaceous and three woody, were irrigated with nutrient solution at electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks and their growth and physiological responses were determined. Although growth was reduced in orange peel jessamine (Cestrum ‘Orange Peel’) and mexican hummingbird bush (Dicliptera suberecta) as salinity increased, no obvious signs of stress or injury were observed, indicating that orange peel jessamine and mexican hummingbird bush were the most salt tolerant. Flame acanthus (Anisacanthus quadrifidus var. wrightii), rock rose (Pavonia lasiopetala), and ‘Dark knight’ bluebeard (Caryopteris ×clandonensis ‘Dark Knight’) had more growth reduction than that of orange peel jessamine and mexican hummingbird bush with minimal or no foliar damage in EC 5 and slight foliar damage in EC 10. Cardinal flower (Lobelia cardinalis) and mexican false heather (Cuphea hyssopifolia) exhibited mortality rates of 30% and 20%, severe foliar damage, and greater than 70% reduction in leaf area and dry weight in EC 10 compared with their respective controls. Although the growth reductions in butterfly blue (Scabiosa columbaria) were not as great as cardinal flower and mexican false heather, 40% of butterfly blue plants were dead with moderate foliar damage in EC 10. Therefore, cardinal flower, mexican false heather, and butterfly blue plants were considered as moderately salt sensitive. Eastern red columbine (Aquilegia canadensis) was the most salt sensitive among the species investigated with moderate foliar damage in EC 5 and all plants died in EC 10. Four out of the nine species tested had significant differences in net photosynthetic rate (Pn), stomatal conductance (g s), and/or relative chlorophyll content between the control and EC 10, and the difference varied with species. Shoot ion concentrations of the nine ornamentals were also affected by salinity levels and varied among species.
Salt-tolerant garden roses (Rosa L.) are needed for arid and semiarid regions where high-quality water supply is limited and soil salinization often occurs. This greenhouse study evaluated growth, ion uptake characteristics, and the daily evapotranspiration rate (ET) of four rose rootstocks [‘Dr. Huey’ (Rosa ×hybrida L.), R. ×fortuniana Lindl., R. multiflora Thunb., and R. odorata (Andr.) Sweet] irrigated with saline solutions with chloride or sulfate as the dominant salts. After 16 weeks of treatment, the elevated salinities reduced growth of all rootstocks, but the magnitude varied with the rootstock and dominant salt type. At moderate [3.9 dS·m−1 electrical conductivity (EC)] and high salinities (7.9 to 8.2 dS·m−1), chloride-dominated salinity led to a greater growth reduction in R. × fortuniana, followed by R. odorata and R. multiflora. At high salinity dominated by sulfate, R. odorata had a greater growth reduction, followed by R. multiflora, ‘Dr. Huey’, and R. ×fortuniana. For R. multiflora, growth was reduced more in chloride-dominated salinity at high salinity levels, but no differences were found in the growth between the two salt types at moderate salinity. Rosa multiflora accumulated more Na than R. odorata, and R. ×fortuniana accumulated the least. However, R. multiflora retained most the Na in the roots, whereas R. odorata transported 57% of the Na to shoots. All rootstocks had a similar high leaf Cl concentration at high salinity dominated by chloride, while R. ×fortuniana had the most severe foliar salt damage, indicating that R. ×fortuniana had a lower threshold concentration of tissue Cl. At moderate salinity, all rootstocks had acceptable visual quality. At high salinity, the appearance of all rootstocks declined with typical salt damage on lower, older leaves, and the plants had lower visual scores in chloride-dominated salinity, especially in R. ×fortuniana. Salinity treatment did not affect the daily ET per unit leaf area, regardless of rootstock and dominant salt type. Daily ET per pot was the smallest in R. ×fortuniana among the four rootstocks due to its smaller total leaf area. The four rootstocks responded differently to salinity and dominant salt type.
Late-season height control of poinsettia (Euphorbia pulcherrima) is difficult since most chemical growth retardants adversely reduce bract size when applied after first bract color. Paclobutrazol (Bonzi) controls stem elongation late in poinsettia crop development but can excessively reduce bract size if improperly applied. Two experiments were conducted to quantify how paclobutrazol application influenced height and bract area of `Freedom' poinsettia. In the first experiment, paclobutrazol was applied at 1 mg·L-1 (ppm) in 118-mL (4.0-fl oz) volumes per pot [(a.i.) 0.12 mg/pot (28,350 mg = 1.0 oz)] as a drench to a new group of plants weekly from the initiation of short days until 1 week before anthesis. Maximum reduction in height and bract area was obtained when paclobutrazol was applied immediately after short days, and the response to paclobutrazol decreased as application time was increasingly delayed toward anthesis. In the second experiment, paclobutrazol was applied weekly after first bract color as either a drench or subapplication at various concentrations. Plant height and bract area were reduced by 23% when 2 mg·L-1 [(a.i.) 0.24 mg/pot) paclobutrazol was applied through subapplication at first color. The effects of paclobutrazol on height and bract area reduction decreased as application time was progressively delayed. Concentrations lower than 1 mg·L-1 had no significant effect on height or bract area reduction, regardless of application time or method. Generally, the reduction in height and bract area was larger when paclobutrazol was applied through subapplication. The combined results from both experiments indicate that paclobutrazol drench applications after flower initiation concomitantly reduce plant height (internode extension) and bract area. Therefore, drench applications should be delayed as long as possible to limit reduction in bract size.
In order to use reclaimed water to irrigate landscape plants and minimize damage and loss, salinity tolerance of commonly used landscape plants needs to be identified and characterized. Eight herbaceous perennials and groundcovers were obtained from a nursery, transplanted to 2.6-L plastic containers, and grown in the greenhouse for 2 weeks before salinity treatments (1.0, 3.2, 6.4, and 12 dS·m-1) were initiated. Plants were irrigated with measured amounts of saline solutions to obtain a 30% leaching when ≈50% water was depleted. After 12 weeks, half of the plants in each treatment were destructively harvested and dry weights of shoots and roots were taken. Three Penstemon species (pseudospectabilis, eatoni, and strictus) and Lavandula angustifoliaat 6.4 and 12 dS·m-1 and most of them at 3.2 dS/m did not survive. Shoot dry weight of Delosperma cooperidecreased by 25% at 12 dS·m–1, but there were no significant differences among the rest of the treatments. All plants of Teucrium chamaedryssurvived, but growth was reduced significantly with lower visual scores as salinity of irrigation water increased. Although growth was reduced in Gazaniarigensas salinity increased, no other signs of stress were observed. Ceratostigma plumbaginoides had less growth at 3.2 dS·m–1, and older leaves showed reddish pigmentation at 6.4 dS·m-1, whereas those at 12 dS·m-1 did not survive. Among the tested species, D.cooperiand G.rigensindicated a high tolerance to salinity; T. chamaedrysand C. plumbaginoides were moderately tolerant; and the rest were salt sensitive.