Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: G. Hong x
- HortScience x
Minimal processing of green onions (Allium cepa × A. fistulosum) involves trimming and removing damaged leaves, cutting of roots, and removal of the compressed stem. If the stem tissue is completely removed with the roots, the white inner leaf bases may extend, or “telescope,” during storage. Storage at 0 °C greatly retards extension growth, but storage at 5 °C results in unacceptable extension rates. To maintain high quality and to extend the shelf life of intact and minimally processed green onions, the potential benefits of heat treatments and controlled atmosphere storage were evaluated. Atmospheres of 0.1% to 0.2% O2 or 0.1% to 0.2% O2 containing 7.5% to 9.0% CO2 at 5 °C were the CA conditions that best maintained visual appearance and prolonged shelf life to more than 2 weeks in both intact and cut onions. No CA treatment completely controlled “telescoping” at 5 °C. Several heat treatment combinations (52.5 and 55 °C water for 4 and 2 min, respectively) of the white inner leaf bases were effective in controlling “telescoping” of cut green onions stored at 5 °C. The effective heat treatments resulted in higher average respiration rates during 12 days, but did not affect the visual quality or shelf life of the cut green onions. Total soluble sugars decreased in intact or cut green onions, but concentrations were maintained in heat -treated onions. Thiosulfinate concentrations did not vary importantly during 14 days at 5 °C, except for a reduction in heat-treated onions not stored under CA.
Random amplified polymorphic DNA (RAPD) markers were analyzed in parents and progeny of four sweetpotato crosses. An average of 69 primers were tested and 23.5% produced well resolved polymorphic banding patterns. Each polymorphic primer had an average of 1.9 polymorphic bands resulting in 0.45 polymorphic fragments per primer tested. Phenotypic segregation ratios of 88% of polymorphic fragments fit those expected for hexaploid Mendelian inheritance. Numbers of linked polymorphic fragments and numbers of linkage groups were 13 and 5 for Cross A, 0 and 0 for Cross B, 23 and 3 for Cross C and 16 and 6 for Cross D. Those results indicated that RAPD markers have potential for a genetic linkage map in sweetpotato; however, many primers must be screened.
Extension growth of minimally processed (removal of roots and compressed stem) green onions (Allium cepa L. × A. fistulosum L.) was greatly reduced by storage in air at 0 °C, while growth of 10-20 mm occurred at 5 °C over 10 days. Heat treatments of 52.5 and 55 -°C water for 4 and 2 min, respectively, were especially effective in reducing growth to less than 5 mm during 12-14 days at 5 °C. Growth was inhibited irrespective of whether the heat treatments were applied before or after cutting. Heat treatments resulted in higher average respiration rates during 12 days at 5 °C, but did not affect the overall visual quality or shelf life. Treatments with 52.5 °C water alone or in combination with different chlorine concentrations (50 to 400 mg·L-1 NaOCl, pH 7.0) were more effective than use of water or chlorine solutions at 20 °C for initial microbial disinfection.
Garlic (cv California Late) was produced under four irrigation regimes (110% and 130% evapotranspiration with two water cut-off dates, 10 and 24 May 1999) in combination with three nitrogen fertilization levels (100, 250, and 400 lb total N). Bulbs were manually harvested mid-June, cured 3 weeks shaded at ambient temperatures and the outer whorl of cloves manually peeled. Samples were freeze-dried, and carbohydrate (fructan and free sugars) and alliin (substrate for alliinase activity and indicator of potential pungency) concentrations were determined by HPLC. The percent dry weight was not affected by the irrigation treatment, but was reduced with increased N rate (41.3% to 39.0%). Alliin concentrations varied from 8.3 to 13.8 mg/g DW for 110% and 130% Eto irrigation treatments. Alliin concentrations were not affected by N fertilization (average = 11.5 mg/g DW). Fructan concentrations were affected by N fertilization treatment, with the highest content (802 mg/g DW) associated with the lowest N level, and the lowest (717 mg/g DW) content in samples from the highest N rate. Sucrose concentrations increased with increased N, but glucose and fructose concentrations did not vary with N fertilization. Fructan as percent of total carbohydrate remained constant across irrigation treatments (96.6% + 0.2%) and across N fertilization treatments (96.6% + 0.3%).
Parents and progeny of four biparental crosses were analyzed for RAPD marker segregation. A range of 57 to 122 primers were tested in each cross, with an average of 82. Average polymorphic primers and band numbers were 22 and 53, respectively. Of the 212 polymorphic bands, phenotypic segregation ratios were as follows: 133 fitted 1 dominant: 1 recessive, 58 fitted 3:1, 11 fitted ratios 4:1 to 19:1 and 10 were distorted. The 1:1 and 3:1 ratios were expected for either diploid or hexaploid segregation, and the 4:1 to 19:1 are exclusive to hexploid. A total of 14 pairs of markers were linked at map distances ranging from 2.1 to 36.5 cM. One common pair of linked markers was found in two separate crosses.
Graft incompatibility of 3 chestnut Castanea spp. was studied. Nine American chestnut C. crenata Sieb. & Zucc and 15 Chinese chestnut C. mollissima Bl. cultivars used as scions were tested on rootstocks of Chinese chestnut. Interspecific grafts with 7 of 9 American chestnut selections had satisfactory graft compatibility on Chinese chestnut rootstocks (70%-100%), so did 6 of 8 Japanese chestnuts. Twelve and 10 out of 15 Chinese cultivars had high graft compatibility on Chinese chestnut rootstocks. Three Chinese cultivars with less than 50% success were probably due to very diverse genetic variation within one cultivar group of Chinese chestnuts. Spring grafts always had higher percent success rates than fall grafts. Graft incompatibility was not found to be related to the cambial isoperoxidase banding patterns in the present study.
As a result of the increasing popularity of fine-leafed zoysiagrasses on golf courses, a 2-year field study was conducted to assess ‘Diamond’ zoysiagrass [Zoysia matrella (L.) Merr.] putting green performance at The Cliff’s Communities Turfgrass Research Facility in Marietta, SC. Factors included four nitrogen (N) fertility rates and two trinexapac-ethyl (TE) regimes. Foliar applications of 0, 4.9, 9.8, and 14.7 kg·ha−1 N were made once weekly for 7 and 15 weeks in 2009 and 2010, respectively. Trinexapac-ethyl was tank-mixed and applied weekly for 7 weeks during July to August at 0 or 0.017 kg a.i./ha totaling 0.120 kg a.i./ha for both growing seasons. Putting green performance was measured by assessing turf quality (TQ), ball roll distance (BRD), surface firmness (SF), leaf tissue nutrient concentrations, and thatch accumulation. Turfgrasses receiving 4.9 kg N/ha weekly exhibited acceptable TQ and greater SF and BRD than plots receiving 14.7 kg N/ha weekly on all rating dates in 2010 before seasonal dormancy. Trinexapac-ethyl reduced clipping yield by 15% to 43% and influenced BRD, SF, and tissue nutrient concentration across the 2-year study. Surface firmness decreased as total N input increased during the 2010 growing season and is presumably the result of an increase in leaf tissue causing a cushioned putting surface. Linear regression of thatch accumulation and SF were analyzed and found to be significant at four rating dates in 2010 indicating that as thatch organic matter increased, SF decreased. Nitrogen input for ‘Diamond’ zoysiagrass putting greens grown in the transition zone should begin at 73.5 kg·ha−1/year with supplemental N applications applied as needed.