Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Fumiomi Takeda Takeda x
  • HortTechnology x
Clear All Modify Search

Using the rotating cross-arm (RCA) trellis and cane training system, lateral canes of trailing ‘Siskiyou’ blackberry (genus Rubus subgenus Rubus) were kept vertically or rotated down to horizontal so that plant canopy was close to the ground. In winter, the plots were either covered with a non-woven rowcover (RC) or left uncovered. Cane injury was least in plants with lateral canes oriented horizontally and covered. Cane injury was high in plants with lateral canes oriented vertically in winter, whether covered or not, and among plants with lateral canes laid close to the ground but not covered. Among ‘Siskiyou’ plants that had lateral canes oriented horizontally, 280 flower clusters and 6.0 kg fruit/plant were produced on plants that had a RC in the winter compared with only 72 flower clusters and 1.7 kg fruit/plant for plants that were not covered in winter, in 2009. Fewer flower clusters developed and the yield was ≤2 kg/plant on plants with lateral canes oriented vertically. Yield differences between the most and least productive treatments were low in 2010 because of milder winter conditions and snowfall during the coldest periods that fully or partially covered the lateral canes oriented horizontally and close to the ground. The RC treatment had no effect on cane injury or yield when lateral canes were oriented vertically. The findings suggested that ‘Siskiyou’ blackberry can be grown in the eastern United States, where winter injury has frequently caused a crop failure, by positioning the lateral canes close to the ground and covering plants with a RC.

Full access

The objective of this study was to evaluate primocane cane training and propagation techniques for the production of long-cane blackberry (Rubus spp.) plants. Seventeen to 29 6-ft-long canes were produced from each semierect ‘Triple Crown’ and trailing ‘Siskiyou’ blackberry plant grown on the rotating cross-arm (RCA) trellis and cane training system. By early August, the lateral canes had grown beyond the top wire ≈6 ft above the ground and continued growing downward to the ground. The tips of the lateral canes reached the soil level from mid-August to mid-September at which time they were placed in 1/2-gal pots containing peat-based media. In early Oct. 2009, the tip-rooted lateral canes were cut from the stock plant at the uppermost trellis wire. Among the long-cane plants produced in 2009, 76% of buds in ‘Siskiyou’ broke, but less than 30% of buds in ‘Triple Crown’ broke in a heated greenhouse. Flowering occurred in 15% of the shoots that developed on rooted ‘Siskiyou’ long canes, but the shoots on the long-cane plants of ‘Triple Crown' were morphologically vegetative and flowering did not occur. In 2010–11, the long-cane plants were detached from the stock plants in December, January, and March. The numbers of nodes with a flowering shoot improved to 41% and 16% and the number of flowers per shoot increased to two and five flowers on long-cane plants of ‘Siskiyou’ and ‘Triple Crown’ blackberry, respectively.

Full access

There is increased interest in growing blackberries in the United States for the fresh fruit market. For fresh market blackberry production, >350 h/acre (900 h·ha-1) of work is required to hand pick blackberries over a season that lasts 5 weeks with harvest every 2 days. Existing bramble mechanical harvesters can detach fruit from plants trained on a vertically oriented I trellis and harvest more cheaply than when harvested by hand, but the harvested fruit does not have fresh-market quality. We developed a cane training and trellis system for semierect blackberries to orient canes horizontally with the fruit positioned below the canes. Also, we developed an over-the-row mechanical harvester that uses vibrating nylon rods on a drum to shake fruit from horizontally trained canes onto a moving fruit-catching surface directly under the canopy to minimize impact damage to fruit. A new trellis design, new cane training practices, and new harvesting technologies have allowed fruit to be removed efficiently and be acceptable for fresh-market sales. This production system has been evaluated economically and appears to be profitable. It could overcome the high cost of handpicking, which has limited the expansion of fresh-market blackberries.

Full access

The majority of U.S. northern highbush blueberry (Vaccinium corymbosum) and southern highbush blueberry (V. corymbosum hybrids) for the fresh market is hand harvested because of the high bruising damage to the fruit caused by current machine harvesters. To reduce bruising, it is important to understand how the harvester’s machine parts interact with the fruit. A miniature instrumented sphere, hereafter referred to as Smart Berry, was developed to mimic a blueberry (Vaccinium species and hybrids) fruit and to quantitatively measure mechanical impacts experienced by a real blueberry fruit during mechanical harvesting. The Smart Berry sensor recorded impacts using three single-axis accelerometers with a maximum sampling frequency of 3 kHz and ±500 g n sensing range. Calibration tests showed that the maximum error of the measurement was 0.53% of the output span. The diameter of the sensor (1 inch) was only half of that for the current smallest instrumented sphere on the market. Used together with a close-up video, the fully calibrated sensors were used to identify and measure mechanical impacts occurring in a commercial rotary blueberry harvester. The data suggested that the catch pan created the largest single mechanical impacts. Thus, reducing the drop height or padding the surface could be effective measures to reduce bruising damage caused by the catch pans. The Smart Berry was also used to compare harvesters with two different detaching mechanisms. The rotary detaching mechanism created significantly fewer and lower-magnitude impacts than the slapper mechanism (P ≤ 0.05). Manual drop tests demonstrated that the impact data recorded by the Smart Berry can be correlated with bruising damage experienced by blueberry fruit. Taken together, the data can be used to improve the design of the current machine harvesters for reduction of bruising damage to blueberry fruit destined for the fresh market, and potentially lead to enhanced highbush blueberry production efficiency in the long run.

Full access

One- or two-node hardwood cuttings were taken from 9-year-old ‘Triple Crown’ and ‘Siskiyou’ blackberry (Rubus) plants on 5 Nov. 2009, 3 Dec. 2009, and 21 Jan. 2010. The response of cuttings with and without partially excised axillary buds to an application of cytokinin was compared with control cuttings with intact axillary buds and no cytokinin. Differences in root development were evident in the two cultivars tested. The cuttings of ‘Siskiyou’ and ‘Triple Crown’ callused on cut ends, but many of the adventitious roots developed from the base of the axillary buds. Shoots emerged from the bud in ≈90% of ‘Siskiyou’ cuttings stuck in November, December, and January. Rooting occurred in more than 90% of cuttings stuck in November and December but declined in cuttings stuck in January. In ‘Siskiyou’, bud excision had no effect on shoot and root emergence, but cytokinin treatment suppressed rooting in cuttings collected in November and January. Shoot emergence and rooting were poorer in ‘Triple Crown’ cuttings than in ‘Siskiyou’. In ‘Triple Crown’ cuttings, partial excision of buds reduced shoot emergence only in January but had no effect on rooting at three sticking dates. Cytokinin treatment improved shoot emergence in November and December but reduced rooting in January. The enclosed system is a viable method for propagating ‘Siskiyou’ blackberry by non-leafy floricane cuttings.

Full access

Northern highbush (NH) blueberry (Vaccinium corymbosum) and southern highbush (SH) blueberry (V. corymbosum hybrids) have fruit that vary in firmness. The SH fruit is mostly hand harvested for the fresh market. Hand harvesting is labor-intensive requiring more than 500 hours/acre. Rabbiteye blueberry (V. virgatum) tends to have firmer fruit skin than that of NH blueberry and has been mostly machine harvested for the processing industry. Sparkleberry (V. arboreum) has very firm fruit. With the challenges of labor availability, efforts are under way to produce more marketable fruit using machine harvesting. This could require changing the design of harvesting machine and plant architecture, and the development of cultivars with fruit that will bruise less after impact with hard surfaces of machines. The objectives of this study were to determine the fruit quality of machine-harvested SH blueberry, analyze the effect of drop height and padding the contact surface on fruit quality, investigate the effect of crown restriction on ground loss, and determine the effect of plant size on machine harvestability. The fruit of ‘Farthing’, ‘Scintilla’, ‘Sweetcrisp’, and several selections were either hand harvested or machine harvested and assessed during postharvest storage for bruise damage and softening. Machine harvesting contributed to bruise damage in the fruit and softening in storage. The fruit of firm-textured SH blueberry (‘Farthing’, ‘Sweetcrisp’, and selection FL 05-528) was firmer than that of ‘Scintilla’ after 1 week in cold storage. Fruit drop tests from a height of 20 and 40 inches on a plastic surface showed that ‘Scintilla’ was more susceptible to bruising than that of firm-textured ‘Farthing’ and ‘Sweetcrisp’. When the contact surface was cushioned with a foam sheet, bruise incidence was significantly reduced in all SH blueberry used in the study. Also, the fruit dropped 40 inches developed more bruise damage than those dropped 20 inches. Ground loss during machine harvesting was reduced from 24% to 17% by modifying the rabbiteye blueberry plant architecture. Further modifications to harvesting machines and plant architecture are necessary to improve the quality of machine-harvested SH and rabbiteye blueberry fruit and the overall efficiency of blueberry (Vaccinium species and hybrids) harvesting machines.

Full access

Outdoor production of floricane-fruiting (FF) blackberry (Rubus subgenus Rubus) is problematic in the Northern Great Plains region of the United States because cane injury and plant death will occur from exposure to temperatures −15 °C and colder. An annual FF blackberry production system using hardwood floricane cuttings would overcome some of the existing limitations of traditional production methods. Several experiments were performed to induce adventitious root formation from one-node hardwood floricane blackberry cuttings taken in winter for the purpose of subsequent growth of a floral shoot. One-node hardwood cuttings of multiple blackberry cultivars (Apache, Arapaho, Kiowa, Osage, Ouachita, Siskiyou, and Triple Crown) were evaluated for rooting potential with and without auxin treatments. Root formation was virtually nonexistent for ‘Apache’, ‘Kiowa’, and ‘Triple Crown’ regardless of the auxin treatment. In general, lower auxin concentrations and the powder formulation produced more roots and had higher root ratings. However, rooting success of cuttings and plant development was low regardless of the rooting method used. Adventitious root production of one-node dormant hardwood FF blackberry cuttings for use in an annual production system had low success regardless of the cultivar, auxin application, rate, and formulation. The variable propagation success rates using single-node hardwood cuttings from ‘Apache’, ‘Arapaho’, ‘Kiowa’, ‘Osage’, ‘Ouachita’, ‘Siskiyou’, and ‘Triple Crown’ plants grown in containers in North Dakota suggested insufficient rooting success for the recommendation of this practice. Additionally, the results suggested these cultivars are not suitable using this method for an annual production system or as a means for large-scale propagation. Although this approach to developing plants from cuttings is of great interest, without a more effective FF blackberry cutting rooting method that can progress through fruit production, an annual blackberry production system in the Northern Great Plains region of the United States is unlikely.

Open Access

Mechanical harvesting systems for processed blueberries (Vaccinium spp.) are available. However, low harvest efficiency and high fruit damage have limited the use of mechanical harvesters for picking blueberries for fresh market to specific cultivars under good weather conditions. New harvesting technology for fresh-market blueberries is needed. The V45 harvester was developed by the U.S. Department of Agriculture in 1994 to harvest fresh-market-quality northern highbush (V. corymbosum) blueberries in Michigan. The current study was performed in Georgia to evaluate the V45 harvester on specially pruned rabbiteye blueberry [V. virgatum (syn. V. ashei)] and southern highbush blueberry (V. darrowi × V. corymbosum) and included analysis of harvest efficiency and fruit quality (percent blue fruit, percent bloom, percent split skin, and internal bruise damage). Six-year-old, 6- to 8-ft-tall ‘Brightwell’ and ‘Powderblue’ rabbiteye blueberry plants were winter pruned to remove vertically growing and overarching canes in the center of the bush in Jan. 2004 and Feb. 2005 respectively. Three-year-old, 3- to 5-ft-tall ‘FL 86-19’ and ‘Star’ southern highbush blueberry plants were similarly pruned in summer (June 2004) or in winter (Feb. 2005). Pruning removed an estimated 30% to 50% of the canopy and opened the middle, resulting in V-shaped plants in both rabbiteye and southern highbush blueberries. Yield of winter-pruned ‘Brightwell’ rabbiteye blueberry was lower compared with unpruned plants during both years, but winter-pruned ‘Powderblue’ rabbiteye blueberry plants produced as much as unpruned plants in 2005. In ‘FL 86-19’ southern highbush blueberry, plants that were summer pruned in June 2004 produced as much as unpruned plants in 2005, but plants that were winter pruned in Feb. 2005 had lower yields than unpruned plants in 2005. The V45 harvester caused little cane damage on pruned blueberry plants. In rabbiteye blueberries, internal fruit damage and skin splitting was less in V45-harvested fruit than in fruit harvested by a sway harvester and nearly that of hand-harvested fruit. However, in ‘FL 86-19’ southern highbush blueberry, the V45 harvester detached a lower percentage of blue fruit and excessive amounts of immature and stemmed fruit. These findings suggest that the V45 harvester has the potential to harvest some rabbiteye blueberry cultivars mechanically with fruit quality approaching that of hand-harvested fruit.

Full access