Search Results
Lack of effective weed control is the major limiting factor in strawberry production. With few herbicides labeled for use in this perennial crop, weeds are controlled using manual labor, cultivation, and one or two herbicide applications. However, these practices do not provide long-term, effective weed control, and weeds continue to be the number one reason why strawberry fields are removed from production due to a reduction in yield. The objective of this study was to evaluate weed control during strawberry plant establishment using woven woolen mats and spring-sown canola. The effects of these mulches on weed control and strawberry plant production were studied independently and in tandem. Weed and daughter plant counts were compared among treatments to test for differences. Wool mulch, both single- and two-ply, was an effective barrier to weeds within the strawberry rows. Planting canola between rows or broadcasting in combination with the wool mulch decreased the number of weeds when compared to other treatments. The four treatments that included wool had the highest number of rooted daughter plants when compared to all the other treatments except the weed-free plot. The canola treatments without wool mulch did not produce as many rooted daughter plants and were not statistically different from the weedy-check.
Bioeconomic weed management models integrate the complex interactions of the biology of crops and weeds, efficacies and costs of chemical and mechanical weed control options, and commodity prices of crops. These models enable producers to customize weed management strategies so that weed control and crop yields are optimized while net economic returns are maximized. A prototype model, WEEDSIM, was developed (Swinton & King) for corn and soybean production. It was field-tested for two years in Minnesota. WEEDSIM's recommendations were agronomically equivalent to standard farmer practices, but they increased net financial returns and reduced chemical release to the environment. A new bioeconomic modeling “shell” has been developed (Wiles & King) to increase adaptability to new crops, weeds, control options, and production regions.
Weeds are a top management concern among organic vegetable growers. Abrasive weeding is a nonchemical tactic using air-propelled abrasive grit to destroy weed seedlings within crop rows. Many grit types are effective, but if organic fertilizers are used, this could integrate weed and nutrient management in a single field pass. Our objective was to quantify the effects of abrasive grit and mulch type on weed suppression, disease severity, soil nitrogen availability, and yield of pepper (Capsicum annuum L. ‘Carmen’). A 2-year experiment was conducted in organic red sweet pepper at Urbana, IL, with four replicates of five abrasive grit treatments (walnut shell grits, soybean meal fertilizer, composted turkey litter fertilizer, a weedy control, and a weed-free control) and four mulch treatments (straw mulch, bioplastic film, polyethylene plastic film, and a bare soil control). Abrasive weeding, regardless of grit type, paired with bioplastic or polyethylene plastic mulch reduced in-row weed density (67 and 87%, respectively) and biomass (81 and 84%); however there was no significant benefit when paired with straw mulch or bare ground. Despite the addition of 6 to 34 kg N/ha/yr through the application of soybean meal and composted turkey litter grits, simulated plant N uptake was most influenced by mulch composition (e.g., plastic vs. straw) and weed abundance. Nitrogen immobilization in straw mulch plots reduced leaf greenness, plant height, and yield. Bacterial spot (Xanthomonas campestris pv. Vesicatoria) was confirmed on peppers in both years, but abrasive weeding did not increase severity of the disease. Pepper yield was always greatest in the weed-free control and lowest in straw mulch and bare soil, but the combination of abrasive weeding (regardless of grit type) and bioplastic or polyethylene plastic mulch increased marketable yield by 47% and 21%, respectively, compared with the weedy control. Overall, results demonstrate that when abrasive weeding is paired with bioplastic or polyethylene mulch, growers can concurrently suppress weeds and increase crop N uptake for greater yields.
Abrasive weeding is a nonchemical weed control tactic that uses small, gritty materials propelled with compressed air to destroy weed seedlings. Organic fertilizers have been used successfully as abrasive grits to control weeds, but the goal for this study was to explore the effects of fertilizer grit, application rates, and background soil fertility on weeds, plant available nitrogen (N) uptake, and crop yield. Field trials were conducted in organic ‘Carmen’ sweet red pepper (Capsicum annuum) and organic ‘Gypsy’ broccoli (Brassica oleracea var. italica) and treatments included organic fertilizer grit (8N–0.9P–3.3K vs. 3N–3.1P–3.3K), grit application rates (low vs. high), compost amendments (with and without), and weedy and weed-free controls. Weed biomass was harvested at 84 days and 65 days after transplanting for pepper and broccoli, respectively. Simulated total plant available N (nitrate + ammonium) uptake was measured with ion exchange resin stakes between 7 and 49 days after the first of two grit applications. Produce was harvested at maturity, graded for marketability, and weighed. The higher grit application rate, regardless of fertilizer type, reduced the weed biomass by 75% to 89% for pepper and by 86% to 99% for broccoli. By 5 weeks after the first grit application, simulated plant N uptake was greatest following grit application with the 8% N fertilizer, followed by the 3% N fertilizer, and lowest in the weedy control. The high grit application rate of 8% N fertilizer increased pepper yield by 112% compared with the weedy control, but it was similar to that of the weed-free control. Broccoli was less responsive to abrasive grits, with yield changes ranging from no difference to up to a 36% increase (relative to the weedy control) depending on the application rate and compost amendment. This is the first evidence indicating that the nutrient composition of organic fertilizer abrasive grits can influence in-season soil N dynamics, weed competition, and crop yield. The results suggest that abrasive weeding technology could be leveraged to improve the precision of in-season fertilizer management of organic crops.