Search Results

You are looking at 1 - 10 of 19 items for :

  • Author or Editor: Frank A. Blazich x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Two experiments investigated the relationship of light and temperature in seed germination of Fraser fir [Abies fraseri (Pursh) Poir.]. Irradiation during the warm portion of 9/15 hr thermoperiod of 20/10C and 30/20C increased germination percentages after 42 days, and the degree of stimulation depended on the timing of the light exposures. A 1-hr exposure was most effective during the latter part of the warm portion of the thermoperiods, and varying the time of irradiation had the greatest effect at 20/10C. The involvement of phytochrome in this photomorphogenic response was ascertained by demonstration of red/far-red reversibility.

Free access

Abstract

Selected putative inhibitors of ribonucleic acid (RNA) synthesis (actinomycin D and 6-methylpurine) or protein synthesis (cycloheximide and puromycin) were examined for their effects on root formation in mung bean (Vigna radiata (L.) R. Wilcz.) cuttings in the presence or absence of naphthaleneacetic acid (NAA). Only 6-methylpurine completely inhibited root formation at concentrations that did not cause visible injury. Cycloheximide was most inhibitory when applied at the same time as NAA. Application of 6-methylpurine up to 12 hours after NAA uptake completely blocked root formation; thereafter its effect declined with time. This decline in response was correlated with enlargement of the nucleus and nucleolus in hypocotyl cells preparatory to cell division.

Open Access

Abstract

Eastern white pine (Pinus strobus L.) and Japanese black pine (Pinus thunbergii Pari.) seedlings were grown under 4 photoperiods with 5 rates of 18N-2.6P-10.0K (18N-6P205-12K2O) Osmocote fertilizer applied at radicle emergence. Seedlings of both species grown under 16 and 20 hour photoperiods at fertilizer rates of 1.78 and 3.56 kg/m3 were taller and had greater dry weight than seedlings grown under 8 and 12 hour photoperiods and higher rates of fertilizer (5.34 and 7.12 kg/m3). With both species, short days inhibited height growth and dry weight accumulation and this effect could not be overcome by increasing the fertilizer rate.

Open Access

Abstract

Inconsistent results obtained with the mung bean (Phaseolus aureus Roxb.) rooting bioassay led to a reexamination of procedures. Autoclaving the double distilled water used completely eliminated the inconsistent results, but boiling and filter sterilization were not completely satisfactory. A decrease in rooting of both control and auxin-treated cuttings was noted in seedlings older than 10 and 9 days respectively. Adventitious roots were initiated within 5 days; incubation for 2 additional days did not increase rooting response. Increasing irradiance from 380 to 4080 μW/cm2 decreased rooting of both control and auxin treated cuttings.

Open Access

Abstract

A histological study of the initiation and development of adventitious roots in lightgrown cuttings of mung bean (Phaseolus aureus Roxb.) showed that cell divisions leading to adventitious root initiation occurred 20–24 hours after the cuttings were taken. Cell divisions began at the same time for control and naphthaleneacetic acid (NAA) treated cuttings indicating that NAA did not alter the timing of root initiation. The root primordia for both were well developed by 48 hours and the roots began to emerge by 72 hours. Intracellular changes in the cells destine for the initial divisions first became visible histologically at 12 hours. By 16 to 20 hours considerable intracellular change was observed, including enlargement of the nuclei and nucleoli and an increase in apparent cytoplasmic staining density.

Open Access

Adventitious shoots developed on cotyledons of Virginia pine (Pinus virginiana Mill.) excised from seeds subjected to H2O2 treatment for 3, 6, or 9 days and cultured on media containing 0.5 to 10 mg BA/liter. Shoot regeneration was greatest (42 shoots per embryo) on cotyledons from seeds treated with H2O2 for 6 days and placed on medium containing BA at 10 mg·liter-1. Excised shoots elongated on medium lacking BA. Following elongation, shoots were placed on media containing IBA at 0 to 40 mg·liter-1 for 14 days followed by transfer to the same medium lacking auxin. Without IBA treatment, rooting was 3%, and increased to 50% for 5 to 40 mg·liter-1. Rooted shoots averaged 2.0 roots per shoot without auxin incorporation, 3.3 roots when treated with 5 mg IBA/liter, and the number of roots increased linearly with increased IBA concentration up to 40 mg·liter-1 (4.5 roots). Plantlets were transferred to growing medium and acclimated successfully to greenhouse conditions. Chemical names used: N- (phenylmethyl)-1 H- purine-6-amine (BA), 1 H- indole-3-butyric acid CBA).

Free access

Seedlings of six provenances of Atlantic white cedar [Chamaecyparis thyoides (L.) B.S.P.] (Escambia Co., Ala., Santa Rosa Co., Fla., Wayne Co., N.C., Burlington Co., N.J., New London Co., Conn., and Barnstable Co., Mass.) were grown in controlled-environment chambers for 12 weeks under 16-hour photoperiods with 16-hour days/8-hour nights of 22/18 °C, 26/22 °C, 30/26 °C, 34/30 °C or 38/34 °C. Considerable variation in height, foliage color, and overall plant size was observed among plants from the various provenances. Seedlings from the two most northern provenances (Massachusetts and Connecticut) were most heat sensitive as indicated by decreasing growth rates at temperature regimes >22/18 °C. In contrast, plants from New Jersey and the three southern provenances (North Carolina, Florida, and Alabama) exhibited greater heat tolerance as indicated by steady or increasing growth rates and greater top and root dry weights as temperature regimes increased above 22/18 °C. Growth rates of seedlings from the four aforementioned provenances decreased rapidly at temperature regimes >30/26 °C suggesting low species tolerance to high temperatures. There were no significant differences in seedling dry matter production among provenances when temperature regimes were ≥34/30 °C. Net shoot photosynthesis and dark respiration of plants did not vary by provenance; however, net photosynthesis was temperature sensitive and decreased at temperature regimes >26/22 °C. Foliar respiration rates increased as temperature increased from 22/18 °C to 26/22 °C, but then remained relatively constant or decreased at higher temperature regimes. Plants at temperatures ≥34/30 °C exhibited severe stunting, chlorosis, and necrosis on branch tips. However, tissue concentrations of N, P, K, Ca, Mg, Fe, Zn, Cu, and Mn generally increased with temperature regimes >30/26 °C indicating that mineral nutrient concentration was not a limiting factor at high temperatures.

Free access

Temperature sensitivity of net photosynthesis (PN) was evaluated among four taxa of rhododendron including Rhododendron hyperythrum Hayata, R. russatum Balf. & Forr., and plants from two populations (northern and southern provenances) of R. catawbiense Michx. Measurements were conducted on leaves at temperatures rauging from 15 to 40C. Temperature optima for PN ranged from a low of 20C for R. russatum to a high of 25C for R. hyperythrum. At 40C, PN rates for R. hyperythrum, R. catawbiense (northern provenance), R. catawbiense (southern provenance), and R. russatum were 7.8,5.7,3.5, and 0.2 μmol·m-2·s-1, respectively (LSD0.05 = 1.7). Rhododendron catawbiense from the southern provenance did not appear to have greater heat tolerance than plants from the northern provenance. Differences in dark respiration among taxa were related primarily to differences in tissue weight per unit leaf surface area. Temperature coefficients (Q5) for respiration did not vary in temperature response among taxa. Differences in heat tolerance appeared to result from a combination of stomatal and nonstomatal limitations on PN at high temperatures.

Free access

Uniconazole was applied as a foliar spray at 0, 90, 130, 170, or 210 mg·liter-1 to rooted stem cuttings of `Spectabilis' forsythia (Forsythia ×intermedia Zab.) potted in calcined clay. Plants were harvested 0, 40, 80, 120, and 369 days after treatment (DAT). Treatment with uniconazole at 90 to 210 mg·liter suppressed leaf area and dry weight an average of 16% and 18%, respectively, compared to the nontreated controls when averaged over all harvest periods. Stem and root dry weight suppression was greatest at 80 DAT, 47% and 37%, respectively. Uniconazole suppressed root length from 15% to 36% and root area from 15% to 33% depending on harvest date. Internode length and stem diameter of uniconazole-treated plants were suppressed at all harvests except 369 DAT. Uniconazole resulted in increased and decreased root: shoot ratios 40 and 80 DAT, respectively; while root: shoot ratios were not affected for the remainder of the study. Relative growth rates of leaves, stems, and roots decreased with increasing uniconazole concentration; however, no relative growth rates were suppressed beyond 80 DAT. Generally, mineral nutrient concentrations increased as a result of uniconazole application. The proportion of mineral nutrients allocated to leaves and roots was not affected while the proportion of nutrients allocated to stems decreased with uniconazole application compared to the controls. Chemical name used: (E)-1-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (uniconazole).

Free access

Hardwood stem cuttings of eastern redcedar (Juniperus virginiana L.), taken from containerized stock plants fertilized weekly with 0, 5, 10, 20, 40, 80, 160, 320, or 640 ppm N, were treated with 7500 ppm IBA and placed under intermittent mist for 12 weeks. Foliar starch and sucrose concentrations within cuttings at time of excision were significantly correlated with percent rooting and root length, respectively. Of the mineral nutrients analyzed (N, P, K, Ca, Mg, Mn, and B), only B and K were significantly correlated with rooting response. A threshold N level (20 ppm), applied weekly, maximized rooting; higher concentrations decreased response. Although N fertilization of stock plants affected adventitious rooting, there were no significant correlations between foliar N levels and measures of rooting response. Chemical name used: 1 H- indole-3-butyric acid (IBA).

Free access