Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Fang Li x
  • HortScience x
Clear All Modify Search

A static experiment in greenhouse was conducted to investigate the growth of three grasses in high and medium eutrophic water and the effects of their removal on ammonia nitrogen (NH4 +-N), nitrate nitrogen (NO3 -N), total nitrogen (TN), total phosphorus (TP), and the chemical oxygen demand (COD), and compared with cattail (Typha angustifolia). The results showed that 1) the removal efficiency of NH4 +-N, NO3 -N, TN, TP, and COD treated by the four plants in eutrophic water were significantly higher than that in non-plant water. With the extension of treatment time, the concentrations of NH4 +-N, NO3 -N, TN, TP, and COD in the eutrophic water decreased first and then tend to be stable. 2) Cynodon dactylon ‘Tifton 85’ (C. dactylon ‘Tifton 85’), Cortaderia selloana ‘Pumila’ (C. selloana ‘Pumila’) and T. angustifolia absorbed more than 95.7% and 88.6% of TN and TP in eutrophic water, and accumulate more than 89.5% and 82.0% in plants, respectively. However, the ratio of Cortaderia selloana ‘Silver Comet’ (C. selloana ‘Silver Comet’) was significantly lower. 3) The high abilities of these three plants to purify eutrophic water may be directly related to their rapid growth. 4) The comprehensive purification ability of the four plants to eutrophic was significantly different, in the order of C. dactylon ‘Tifton 85’ > C. selloana ‘Pumila’ ≈ T. angustifolia > C. selloana ‘Silver Comet’. These results indicated that C. dactylon ‘Tifton 85’ and C. selloana ‘Pumila’ can be used as alternative plants to T. angustifolia for the purification of eutrophic water. The results of this study can provide new materials and ideas for phytoremediation.

Open Access

Southern highbush blueberry (SHB, Vaccinium corymbosum L. interspecific hybrid) is the major species planted in Florida because of the low-chilling requirement and early ripening. The growth pattern and nitrogen (N) demand of SHB may differ from those of northern highbush blueberry (NHB, V. corymbosum L.). Thus, the effect of plant growth stage on N uptake and allocation was studied with containerized 1-year-old SHB grown in pine-bark amended soil. Five ‘Emerald’ plants were each treated with 6 g 10% 15N labeled (NH4)2SO4 at each of 12 dates over 2 years. In the first year, plants were treated once in late winter, four times during the growing season, and once in the fall. In the second year, treatment dates were based on phenological stages. After a 14-day chase period following each 15N treatment, plants were destructively harvested for dry weight (DW) measurements, atom% of 15N, and N content of each of the plant tissues. Total DW increased continuously from mid-May 2015 to Oct. 2015 and from Mar. 2016 to late Sept. 2016. From August to October of both years, external N demand was the greatest and plants absorbed more N during the 2-week chase period, about 0.53 g/plant in year 1 and 0.67 g/plant in year 2, than in chase periods earlier in the season. During March and April, N uptake was as low as 0.03 g/plant/2 weeks in year 1 and 0.21 g/plant/2 weeks in year 2. Nitrogen allocation to each of the tissues varied throughout the season. About half of the N derived from the applied fertilizer was allocated to leaves at all labeling times except the early bloom stage in 2016. These results suggest that young SHB plants absorb greater amounts of N during summer and early fall than in spring.

Free access

Ethylene response factor (ERF) genes have been characterized in numerous plants, where they are associated with responses to biotic and abiotic stress. Modified atmosphere packaging (MAP) is an effective treatment to prevent lotus root browning. However, the possible relationship between ERF transcription factors and lotus root browning under MAP remains unexplored. In this study, the effects of phenol, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) enzyme activities; and PPO, PAL, POD, and ERF gene expression on fresh-cut lotus root browning were studied with MAP. The expression pattern of ERF2/5 correlated highly with the degree of browning. It is suggested that NnERF2/5 can be used as an important candidate gene for the regulation of fresh-cut lotus root browning under MAP, and the correlation of each gene should be studied further.

Open Access

As a wild apple species native to central Asia, Malus sieversii (Ledeb.) Roem. is distributed in a wide region covering most of the Tienshan Mountains. Malus sieversii is a useful genetic pool for apple breeding since rich with diversity. In this paper, we first describe the species range of this endangered species. We then describe an in situ reserve that has been established. We also investigated some reproductive characteristics of M. sieversii including pollen germination, seed dormancy, and seed viability. Both stratification and seedcoat removal efficiently released seed dormancy and accelerated seed germination. Pollen germination rate is around 60%. Our data suggest that injurious insects and human activities, rather than reproductive characters, limit the renewal of M. sieversii.

Free access

Head splitting resistance (HSR) in cabbage is an important trait closely related to appearance, yield, storability, and mechanical harvestability. In this study, a doubled haploid (DH) population derived from a cross between head splitting-susceptible inbred cabbage line 79-156 and resistant line 96-100 was used to analyze inheritance and detect quantitative trait loci (QTLs) for HSR during 2011–12 in Beijing, China. The analysis was performed using a mixed major gene/polygene inheritance method and QTL mapping. This approach, which uncovered no cytoplasmic effect, indicated that HSR can be attributed to additive-epistatic effects of three major gene pairs combined with those of polygenes. Major gene and polygene heritabilities were estimated to be 88.03% to 88.22% and 5.65% to 7.60%, respectively. Using the DH population, a genetic map was constructed with simple sequence repeat (SSR) markers anchored on nine linkage groups spanning 906.62 cM. Eight QTLs for HSR were located on chromosomes C4, C5, C7, and C9 based on 2 years of phenotypic data using both multiple-QTL mapping and inclusive composite interval mapping. The identified QTLs collectively explained 37.6% to 46.7% of phenotypic variation. Three or four major QTLs (Hsr 4.2, 7.2, 9.3, and/or 9.1) showing a relatively larger effect were robustly detected in different years or with different mapping methods. The HSR trait was shown to have a complex genetic basis. Results from QTL mapping and classical genetic analysis were consistent. Our results provide a foundation for further research on HSR genetic regulation and molecular marker-assisted selection (MAS) for HSR in cabbage.

Free access

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.

Open Access