Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Erzsébet Kiss x
  • HortScience x
Clear All Modify Search

A collection of 66 commercial apple (Malus ×domestica Borkh.) cultivars was screened with six previously described SSR (Simple Sequence Repeat) markers for molecular identification. In total, 55 polymorphic alleles were detected at the 6 SSR loci (average 9.2 alleles per locus) and the polymorphism information content (PIC) averaged 0.72. Successful differentiation of all apple genotypes except for somatic mutants was accomplished by using only four (CH03g07, CH04e03, CH05d11, and CH05e03) SSR markers. Sport mutants proved to be indistinguishable from each other and their progenitors. The cumulative probability of obtaining an identical SSR profile for two randomly chosen apple genotypes was 1.79 × 10–4, which confirms the high potential of simple sequence repeats (SSRs) for cultivar identification.

Free access

To elucidate the role of ethylene in nonclimacteric fruit development and ripening, quantitative (cDNA–amplified fragment length polymorphism) cDNA–AFLP was used to visualize differential gene expression in four stages of ripening of strawberries (Fragaria×ananassa Duch. `Elsanta') treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action. The proportion of clones affected by 1-MCP treatment was much higher in green than in white, pink, and red receptacle tissue. Three major cell-wall-related genes were affected by 1-MCP and, thus, are putatively ethylene dependent: a ripening-repressed beta-galactosidase (Faßgal3), up-regulated by 1-MCP; a putative endo-1,3-1,4-beta-D-glucanase (EGase), up-regulated in green and down-regulated in red fruit by 1-MCP; and a pectate lyase B (plB), expressed only in the red stage and significantly down-regulated by 1-MCP. Furthermore, we have identified genes encoding an alcohol dehydrogenase, a protein kinase-related protein, and a putative glutathione S-transferase, all ripening-induced and down-regulated by 1-MCP, suggesting that their regulation is at least partly ethylene dependent.

Free access

The aim of this work was to examine the role of fructose 2,6-bisphosphate (fru 2,6P2) in the carbohydrate metabolism in carnation (Dianthus caryophyllus L.). For this purpose, transgenic plants harboring two modified bifunctional enzyme complementary DNAs of rat liver origin (6-phosphofructo-2-kinase/fructose 2,6-biphosphatase) were generated. Transformation with the kinase construct resulted in a 45% to 85% increase in fru 2,6P2 concentrations compared with the wild type. Transformation with the phosphatase construct reduced the fru 2,6P2 contents by 45% and 70%. These alterations in fru 2,6P2 amounts affected the key enzyme activities of sucrose and starch metabolism. Accordingly, plants with elevated fru 2,6P2 concentrations had high levels of starch, fructose, and triose phosphates, and low levels of sucrose, glucose, and hexose phosphates. In plants with reduced amounts of fru 2,6P2 different results could be observed in major carbohydrate compounds.

Free access