Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Erin J. Yafuso x
  • HortScience x
Clear All Modify Search

Oxygen supply to the root zone is essential for healthy plant growth, and one technology that can potentially supply additional oxygen is the injection of purified oxygen (oxygenation) into irrigation water. The objective was to evaluate whether oxygenation of irrigation water affected plant growth and substrate dissolved oxygen (DO) levels during mist propagation of unrooted cuttings and subsequent growth in containers. Dissolved oxygen measured at source tanks for ambient tap water (averaging 7.1 mg·L−1) or oxygenated tap water (31.1 mg·L−1) was pumped through fine (69 µm) mist nozzles for propagation of Calibrachoa ×hybrid ‘Aloha Kona Dark Red’ and Lobelia erinus ‘Bella Aqua’. There were no measured differences in root length or root dry mass for Calibrachoa and Lobelia propagated using oxygenated water compared with ambient water because DO of ambient or oxygenated water reached ≈100% oxygen saturation in water (8.7 mg·L−1) after passing through mist nozzles. To evaluate subsequent growth without the effect on DO of fine emitters, rooted cuttings of these two plant species and Pelargonium ×hortorum ‘Patriot Red’ were grown in 10.2-cm diameter pots. The plants were irrigated with either ambient (6.0 mg·L−1) or oxygenated (27.7 mg·L−1) nutrient solutions, delivered by top watering or subirrigation when the substrate dried to ≈45% of container capacity (CC), measured gravimetrically. Oxygenated water did not enhance root or shoot growth compared with ambient water for the three bedding plants. In addition, Pelargonium growth was not enhanced when irrigated at high moisture level (maintained at 80% CC) with oxygenated water compared with ambient water. In container substrate without plants, it was possible to increase DO of the substrate solution by 68% when a high volume of oxygenated water (200% container volume or 850 mL) was applied by top watering because existing substrate solution was displaced. In contrast, when containers were subirrigated at 45% CC, the smaller 180-mL volume of oxygenated water was absorbed by the substrate and did not increase DO compared with ambient water. Overall, irrigating with oxygenated water did not enhance root or plant growth of three bedding plants grown in porous, peat-based substrate. To increase oxygen supply to roots in container production, growers should focus on having adequate air porosity in substrate and avoiding overwatering.

Free access

Hydroponic growing systems are advantageous for nutrient studies in which root data are important because they alleviate the laborious and time-consuming task of washing roots to remove soilless substrate particulates from them. However, the growing system should be optimized for the crop of interest. Our overall objective was to develop a protocol for hydroponic strawberry (Fragaria ×ananassa) production that provided growth equal to or better than soilless substrate. Plants were initially grown in perlite, sand, deep water culture (DWC), or a peat-based soilless substrate. Aboveground plant growth in DWC was similar to that of plants grown in the peat-based substrate and required minimal effort to harvest the entire root system. However, the pH of the DWC nutrient solution decreased to 4.0 ± 0.1 (mean ± SE) when plants were provided a modified strawberry (Yamazaki) nutrient solution with a ratio of nitrate (NO3 ) to ammonium (NH4 +) of 80:20. As a result, a subsequent trial was conducted to evaluate the buffering capacity of nutrient solutions with NO3 to NH4 + ratios of 0:100, 20:80, 50:50, 60:40, 80:20, or 100:0, with the addition of potassium bicarbonate (KHCO3). Up to 2.6 mM KHCO3 did not provide adequate buffering in nutrient solutions containing NH4 + (0:100 to 80:20 treatments), and nutrient solution pH decreased by ∼1.5 units every 2 to 3 days. The 100% NO3 nutrient solution, however, maintained a stable pH of 5.9 ± 0.1 when buffered with 0.8 mM KHCO3. Finally, 2(N-Morpholino)ethanesulfonic acid (MES) was evaluated as a potential buffering agent for DWC strawberry production. Plants were grown in a nutrient solution with a 60:40 ratio of NO3 :NH4 +. The buffering capacity of the nutrient solution increased as the MES concentration supplied increased from 1 to 5 mM, and the 5 mM MES treatment maintained a pH of 5.6 ± 0.2. In summary, strawberry plants can successfully be grown hydroponically in DWC, provided that nutrient solution pH is adequately managed. The addition of MES buffer provided better pH stability than KHCO3.

Open Access

Greenhouse propagation of unrooted plant cuttings is characterized by short container cell height and high irrigation frequency. These conditions can result in high moisture level and low air content in soilless container substrates (“substrates”), causing delayed growth of adventitious roots and favoring root disease. The objective of this study was to quantify and compare substrate water and air relations for three propagation substrates (peat, rockwool, and phenolic foam) that varied widely in physical characteristics using four methods: 1) evaporation method with a tensiometer, 2) frozen column method, 3) gravimetric analysis, and 4) X-ray computed tomography (CT) analysis. Moisture retention curves based on evaporation (1) and the frozen column (2) resulted in differences for peat, but similar curves for rockwool and foam. The frozen column method was simple and low cost, but was constrained by column height for peat, which had a higher water potential compared with the other two substrates. Substrate porosity analysis at container capacity by gravimetric or CT methods were similar for volumetric water and air content (VWC and VAC) in rockwool and foam, but differed for peat for VWC and VAC. Gravimetric analysis was simple, rapid, and low cost for whole-cell analysis, but CT further quantified spatial water and air relations within the cell and allowed visualization of complex water and air relations in an image. All substrates had high water content at container capacity ranging from 67% to 91% VWC with 5% to 11% VAC in the short propagation cells, emphasizing the need for careful irrigation management.

Open Access