Search Results

You are looking at 1 - 10 of 47 items for :

  • Author or Editor: Erik S. Runkle x
  • HortScience x
Clear All Modify Search

Environments with a low red (R, 600 to 700 nm) to far-red (FR, 700 to 800 nm) ratio (e.g., with high plant density) promote stem elongation, and a high R: FR suppresses it. While FR light promotes stem extension, it is also required for rapid, uniform flowering of many long-day plants. We investigated how a new FR filter [creating a FR-deficient (FRd) environment] influenced plug growth and subsequent flowering of pansy (Viola ×wittrockiana `Crystal Bowl Yellow'), petunia (Petunia ×hybrida `Carpet Pink'), impatiens (Impatiens wallerana `Accent Rose'), snapdragon (Antirrhinum majus `Liberty Scarlet'), and tomato (Solanum lycopersicon `Beefmaster'). One-week-old seedlings were placed under three filter treatments with 16-h photoperiods: the FRd filter, a neutral-density filter (N) that transmitted a similar PPF, and transferring plugs from the N to the FRd filter when leaves of each species began to touch (7 to 11 days later). The predicted phytochrome photoequilibria under the FRd and N filters was 0.80 and 0.72, respectively. After 25 to 35 days at 20 °C, node number and stem (or petiole for pansy) length were collected. Twenty plants of each species and filter treatment were then transferred to 4-inch pots and grown under natural photoperiods (14 to 15 h) at 20 °C until flowering. Compared to plants continually under the N filter, stem length under the FRd filter was significantly reduced in impatiens (by 11%), pansy (by 18%), petunia (by 34%), snapdragon (by 5%), and tomato (by 24%). Flowering of plants from plugs under the FRd filter was delayed by 2 to 3 days for snapdragon, petunia, and pansy. Filter treatment of plugs had no significant effect on flower number or plant height at flower.

Free access

For many plants, light quality has a pronounced effect on plant morphology; light with a low red (R, 600 to 700 nm) to far-red (FR, 700 to 800 nm) ratio promotes stem elongation and a high R: FR, or blue light (B, 400 to 500 nm), suppresses it. In addition, FR light is required for rapid flowering in some species, particularly for long-day plants. Our objective was to quantify how flexible spectral filters, which selectively reduce FR, B, or R, influence plant height and flowering of the quantitative long-day plants Pisum sativum L. `Utrillo' and Viola ×wittrockiana Gams. `Crystal Bowl Yellow'. Plants were grown at 20 °C with reduced FR, B, or R environments or with a neutral density control (C) filter. Calculated phytochrome photoequilebria were 0.78, 0.73, 0.71, or 0.46 for the altered FR, B, C, or R environments, respectively. All filter treatments transmitted a similar photosynthetic photon flux. Sixteen-hour photoperiods were created with natural daylight supplemented with high-pressure sodium lamps positioned above filters. Viola grown under the FR filter never reached 100% flowering within 8 weeks, and visible bud appearance was delayed by at least 17 days compared to all other filters. The R and B filters enhanced peduncle length by at least 25% compared to the C or FR filters. In Pisum, average internode length was 2.2, 2.9, 3.4, and 3.7 cm under the FR, C, B, and R filters, respectively, all statistically different. Fresh and dry shoot weights were similar under the C and FR filters but were at least 35% greater under the B filter and 35% lower under the R filter.

Free access

Flowering potted orchids has become one of the largest segments of floriculture worldwide. Large-scale production of cuts or potted plants exists in China, Germany, Japan, The Netherlands, Taiwan, Thailand, and the United States. Despite the value of orchids, the flowering physiology of most orchid genera is not well described. Therefore, scheduling flowering crops for specific market dates (such as Easter or Mother's Day) is not possible for most genera. This paper summarizes world orchid production and reviews how environmental factors regulate growth and flowering of several commercially important orchid genera: Cattleya, Cymbidium, Dendrobium, Miltoniopsis, Phalaenopsis, and Zygopetalum. These genera primarily flower in response to relatively low temperatures, and, for some species and hybrids, flowering is promoted when the plants are also exposed to short photoperiods. Effects of light and temperature on growth and development are summarized for these genera, and implications for controlled production are discussed.

Free access

Miltoniopsis orchids have appealing potted-plant characteristics, including large, fragrant, and showy pansylike flowers that range from white and yellow to shades of red and purple. Scheduling orchid hybrids to flower on specific dates requires knowledge of how light and temperature regulate the flowering process. We performed experiments to determine whether a 9- or 16-h photoperiod [short day (SD) or long day (LD)] before vernalization and vernalization temperatures of 8, 11, 14, 17, 20, or 23 °C under SD or LD regulate flowering of potted Miltoniopsis orchids. Flowering of Miltoniopsis Augres `Trinity' was promoted most when plants were exposed to SD and then vernalized at 11 or 14 °C. Additional experiments were performed to determine how durations of prevernalization SD and vernalization at 14 °C influenced flowering of Miltoniopsis Augres `Trinity' and Eastern Bay `Russian'. Plants were placed under SD or LD at 20 °C for 0, 4, 8, 12, or 16 weeks and then transferred to 14 °C under SD for 8 weeks. Another set of plants was placed under SD or LD at 20 °C for 8 weeks and then transferred to 14 °C with SD for 0, 3, 6, 9, or 12 weeks. After treatments, plants were grown in a common environment at 20 °C with LD. Flowering of Miltoniopsis Augres `Trinity' was most complete and uniform (≥90%) when plants were exposed to SD for 4 or 8 weeks before 8 weeks of vernalization at 14 °C. Flowering percentage of Miltoniopsis Eastern Bay `Russian' was ≥80 regardless of prevernalization photoperiod or duration. This information could be used by greenhouse growers and orchid hobbyists to more reliably induce flowering of potted Miltoniopsis orchids.

Free access

The photosynthetic daily light integral (DLI) dramatically increases during the spring when the majority of bedding plants are commercially produced. However, the effects of DLI on seedling growth and development have not been well characterized for most bedding plant species. Our objectives were to quantify the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determine whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18 to 26 days at 21 °C with a DLI ranging from 4.1 to 14.2 mol·m–2·d–1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m–2·d–1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering (plant quality parameters) decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.

Free access

The photosynthetic daily light integral (DLI) dramatically increases during the spring, but effects of DLI on seedling growth and development have not been characterized for many species. We quantified the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determined whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18–26 days at 21 °C with a DLI ranging from 4.1–14.2 mol·mol·m-2·d-1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m-2·d-1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.

Free access

The production value of potted orchids has increased by 155% in the past decade, and they are now the second-most valuable potted flowering plant in the United States. Scheduling orchids to flower on specific dates requires knowledge of the environmental parameters that regulate flower induction. However, the flowering requirements of the vast majority of orchid species and hybrids have not been well described. Odontioda is a cool-growing, epiphytic genus originating from the Andes Mountains of South America, and several hybrids are commercially grown for their bright-colored flowers and compact habit. We quantified the promotion of inflorescence initiation and time from visible inflorescence (VI) to anthesis at constant and fluctuating day/night temperatures. Odontioda George McMahon `Fortuna' and Lovely Penguin `Emperor' were grown at constant temperatures of 14, 17, 20, 23, 26, or 29 °C, and day/night (12 h/12 h) temperatures of 20/14, 23/17, 26/14, 26/20, 29/23, or 29/17 °C. Plants were grown in glass greenhouses under a 12-h photoperiod, and shading was provided so that the maximum instantaneous irradiance was ≤300 μmol·m-2·s-1. After 6 weeks at the various temperature setpoints, heat stress symptoms were observed on plants grown at 26, 29, 26/14, 26/20, 29/23, and 29/17 °C. After 14 weeks, ≥60% of both hybrids had VI when grown at 14, 17, 20, or 20/14 °C. Data for time from VI to anthesis were converted to a rate and a thermal-time model relating temperature with inflorescence development was developed. This information could be used by commercial orchid growers to schedule flowering Odontioda orchids for specific market dates.

Free access

In 2003, commercial greenhouse growers in the United States imported 724 million nonrooted cuttings valued at $53 million. During transit and storage, cuttings can be exposed to environmental stresses (e.g., low or high temperature), which can consequently decrease quality, rooting, and subsequent plant performance. We performed experiments to quantify how temperature and storage duration of cuttings influence root initiation, root number, lateral branch count and length, and time to flower of Tiny Tunia `Violet Ice' petunia (Petunia × hybrida hort. Vilm. -Andr.). Dry or wet cuttings were harvested and packaged into perforated bags within small, ventilated boxes and then into traditional shipping boxes. The boxes were placed in environmental chambers with temperature setpoints of 0, 5, 10, 15, 20, 25, or 30 °C for 0, 1, 2, 3, 4, or 5 d. Cuttings were then rooted in a propagation house at 26 °C with a vapor pressure deficit of 0.3 kPa under ambient photo-periods. The visual quality rating of dry packaged cuttings decreased with increasing temperature and shipping duration. After 2 d at ≥25 °C, cuttings were horticulturally unacceptable due to water stress and chlorophyll degradation and they never fully recovered. Dry- or wet-packaged cuttings held at temperatures of 0 to 30 °C formed significantly fewer roots and lateral branches as duration increased from 1–5 d. Although cuttings held for 5 d at 0 °C produced 60% fewer lateral branches, they subsequently flowered 5 d earlier than plants held at 0 °C for 1 d. Therefore, exposure to temperatures >15 °C for ≥3 d can reduce petunia cutting quality, delay rooting, and decrease plant size at flowering.

Free access

Flowering of the herbaceous perennial Aquilegia is generally considered to require vernalization after seedlings are mature, whereas photoperiod has little or no effect. We performed experiments to determine the flowering responses for two Aquilegia ×hybrida varieties, one of which reportedly has reduced cold requirements. Seedlings of Aquilegia ‘Origami Blue and White’ and ‘Winky Double Red and White’ with three to five leaves were either placed directly into a 5 °C cooler with low-intensity lighting for 9 hours/day or transplanted to 13-cm containers and grown (bulked) for 0, 3, or 6 weeks at 20 °C under 9-hour short days (SDs) or 16-h long days (LDs). Plants were then cooled at 5 °C for 0, 5, or 10 weeks and placed in a common forcing environment at 20 °C under LDs. Flowering response of the two cultivars differed markedly. All Aquilegia ‘Origami Blue and White’ plants placed directly into the forcing environment flowered and in a mean of 93 days. Flowering percentage of plants cooled in the plug tray decreased with increasing duration of cold treatment, and only 15% flowered after a 10-week cold treatment. All plants bulked for 3 or 6 weeks before cold treatment flowered after 25 to 36 days in the forcing environment. Adding bulking and forcing time together, time to flowering of ‘Origami Blue and White’ was complete and most rapid (62 days) when plants were bulked for 3 weeks under SDs and then forced under LDs. In contrast, no ‘Winky Double Red and White’ plants flowered without cold treatment, and 6 weeks of bulking followed by 10 weeks of cold was required for 100% flowering. These results indicate that ‘Origami Blue and White’ has a relatively short juvenile phase and flowering was promoted by SD bulking or cold treatment, whereas ‘Winky Double Red and White’ has a longer juvenile phase and requires cold for flowering.

Free access

Light-emitting diodes (LEDs) are of increasing interest in controlled environment plant production because of their increasing energy efficiency, long lifetime, and colors can be combined to elicit desirable plant responses. Red light (600–700 nm) is considered the most efficient wavelength for photosynthesis, but little research has compared growth responses under different wavelengths of red. We grew seedlings of impatiens (Impatiens walleriana), petunia (Petunia ×hybrida), tomato (Solanum lycopersicum), and marigold (Tagetes patula) or salvia (Salvia splendens) at 20 °C under six sole-source LED lighting treatments. In the first experiment, a photosynthetic photon flux (PPF) of 160 μmol·m−2·s–1 was provided for 18 h·d−1 by 10% blue (B; peak = 446 nm) and 10% green (G; peak = 516 nm) lights, with the remaining percentages consisting of orange (O; peak = 596 nm)–red (R; peak = 634 nm)–hyper red (HR; peak = 664 nm) of 20–30–30, 0–80–0, 0–60–20, 0–40–40, 0–20–60, and 0–0–80, respectively. There were no consistent effects of lighting treatment across species on any of the growth characteristics measured including leaf area, plant height, or shoot fresh weight. In a second experiment, seedlings were grown under two light intensities (low, 125 μmol·m−2·s–1 and high, 250 μmol·m−2·s–1) consisting of 10% B and 10% G light and the following percentages of R–HR: 0–80, 40–40, 80–0. Shoot fresh weight was similar in all light treatments, whereas shoot dry weight was often greater under the higher light intensity, especially under the 40–40 treatments. Leaf chlorophyll concentration under 40–40low, 80–0low, or both was often greater than that in plants under the high light treatments, indicating that plants acclimated to the lower light intensity to better use photons available for photosynthesis. We conclude that O, R, and HR light have generally similar effects on plant growth at the intensities tested when background G and B lights are provided and thus, selection of red LEDs for horticultural applications could be based on other factors such as economics and durability.

Free access