Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Ellen T. Paparozzi x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

Leaves of Betula alleghaniensis Britt. (yellow birch) and Phaseolus vulgaris L cv. Red Kidney (bean) were examined microscopically during development and after exposure to simulated rain of pH 5.5, 4.3, 3.2, and 2.8. Yellow birch leaves attained maximal leaf area, midvein length, and cuticle thickness at 21 days. Trichomes were either long, unicellular, or multicellular with caplike head and stalk. Epicuticular wax was a bumpy and amorphous layer. The 2nd trifoliolate leaf of red kidney bean attained maximal leaf area, midvein length, and cuticle thickness when the 3rd trifoliolate leaf was expanding. Trichomes present were long, with a unicellular head and a multicellular base; long, unicellular, and terminally hooked; and small and multicellular. Epicuticular wax was present as small irregular flakes. After 2 days of pH 2.8 and 4 days of pH 3.2 simulated acid rain, round yellow and small tan lesions appeared on birch and bean leaves, respectively. Most injury occurred on or between small veins. Most trichome types were uninjured. Lesions formed as a result of collapsed epidermal and highly plasmolyzed palisade cells. The cuticle was still present over injured epidermal cells and epicuticular waxes were unchanged. There was no statistical difference in mean cuticle thickness due to pH of simulated rain.

Open Access

Abstract

Rooted cuttings of Pilea cadierei Gagnep. & Guillaum., Chrysanthemum morifolium Ramat. cv. Giant #4 Indianapolis White, Hedera helix L. cv. Thorndale, Pachysandra terminalis Siebold & Zucc. and young plants of Juniperus chinensis L. cv. Mint Julep and Ligustrum X vicaryi were exposed for 3 weeks to either water mist or mist to which a complete all soluble fertilizer (23N-8P-14K) was added; roots and root medium were protected from the mist. The N, P and usually K content of all plants increased after foliar application of nutrients. Pilea, pachysandra and Hedera increased in height, dry weight, and number of lateral breaks; privet increased in height and overall greening of the foliage occurred. The optimum concentration of foliar-applied nutrients was 600 ppm for Pilea, 750 ppm for Hedera and pachysandra and 300 ppm for Ligustrum; higher concentrations caused foliage injury. Injury occurred to chrysanthemum and juniper at all concentrations studied. Cuticle thickness and plant tolerance to foliar nutrition were not correlated.

Open Access

Response surface methods refer to a set of experimental design and analysis methods to study the effect of quantitative treatments on a response of interest. In theory, these methods have a broad range of applicability. While they have gained widespread acceptance and application in manufacturing and quality improvement research, they have never caught on in the agricultural sciences. We propose that this is because there has not been specific research demonstrating their usage. In this paper, two 34 factorial experiments were performed using 100 poinsettia plants (Euphorbia pulcherrima Willd. ex Klotzsch) to measure nutrient element concentrations in leaves at three rates each of nitrogen (N), sulfur (S), iron (Fe), and manganese (Mn). Three different methods of analysis were compared—the standard analysis of variance with no regression model, the quadratic regression model commonly assumed for most standard response surface methods and the Hoerl model regression, a nonlinear alternative to quadratic response. Actual nutrient element values were compared with the values predicted by each regression model and then also evaluated to see if the visual symptomology of yellowing related to those nutrient concentrations in leaves. The Hoerl model demonstrated better ability to detect biologically relevant nonlinear two-, three-, and four-way nutrient interactions. Though there was minimal replication this model characterized the treatment effects while keeping the size of the experiment manageable both in terms of time (labor) and cost of plant analyses. Additionally, it was shown that when S, Fe, and/or Mn were deficient along with N, their visual deficiency symptoms were masked by the overall yellowing associated with N deficiency. This model is recommended as the initial experiment in a series where scientists are looking to expand information already determined for two factors. Other treatment systems that this can be used with include: levels of irrigation, pesticides, and plant growth regulators.

Free access

`Dark Yellow Fuji Mefo' chrysanthemums (Dendranthema grandiflora Tzvelev.) were grown hydroponically with either 64, 127, or 254 mg·L-1 N and either 0, 1, 2, 4, 8, 16, 32, or 64 mg·L-1 S in a randomized complete block. Time to flower was measured and symptoms of S deficiency were observed on root, stem, and leaf systems. New leaves and inflorescences were analyzed for S, and lower leaves were analyzed for N concentration. There were four sampling dates and two experiments. Flower diameter was measured when flowers were present, while stem length was measured every sampling date. Nitrogen application could be reduced by half to 127 mg·L-1 as long as some S, 4 mg·L-1 in the fall and 8 mg·L-1 in the spring, was applied. Sulfur deficiency symptoms observed included branchless roots, which aged earlier, overall yellowing of new leaves, and reddening on the leaf abaxial starting from older leaves and moving acropetally. Plants receiving no S had smaller leaves, shorter stems, delayed inflorescence initiation, and restricted inflorescence development. Without S, plants did not produce flowers suitable for commercial sale.

Free access

We examined all articles in volume 139 and the first issue of volume 140 of the Journal of the American Society for Horticultural Science (JASHS) for statistical problems. Slightly fewer than half appeared to have problems. This is consistent with what has been found for other biological journals. Problems ranged from inappropriate analyses and statistical procedures to insufficient (or complete lack of) information on how the analyses were performed. A common problem arose from taking many measurements from the same plant, which leads to correlated test results, ignored when declaring significance at P = 0.05 for each test. In this case, experiment-wise error control is lacking. We believe that many of these problems could and should have been caught in the writing or review process; i.e., identifying them did not require an extensive statistics background. This suggests that authors and reviewers have not absorbed nor kept current with many of the statistical basics needed for understanding their own data, for conducting proper statistical analyses, and for communicating their results. For a variety of reasons, graduate training in statistics for horticulture majors appears inadequate; we suggest that researchers in this field actively seek out opportunities to improve and update their statistical knowledge throughout their careers and engage a statistician as a collaborator early when unfamiliar methods are needed to design or analyze a research study. In addition, the ASHS, which publishes three journals, should assist authors, reviewers, and editors by recognizing and supporting the need for continuing education in quantitative literacy.

Open Access

Nitrogen response was compared in two Plectranthus species, Plectranthus parviflorus and Plectranthus ambiguus, which differ substantially in their phenotypic reaction to nitrogen limitation. The leaves of the former species gradually yellow during the nitrogen stress but are retained on the plant. This species copes with nitrogen deficiency also by gradual hydrolysis of starch grains. The latter species, P. ambiguus, responds by abscission of lower leaves. As plant hormones cytokinins are involved in nitrogen response as well as in regulation of the chlorophyll content, their dynamics were followed to explore the fast responses as well as the impact of nitrogen treatment. Both plant species responded to nitrogen deficiency/supplementation in similar ways, by downregulation and upregulation, respectively, of active cytokinins. However, the different phenotypic reactions imposed by nitrogen limitation were associated with specific regulation of cytokinin pool accompanying the stress response by the two species. The increase of the active cytokinins on nitrogen resupply was faster and stronger in the regreening species, P. parviflorus than in P. ambiguus. However, the P. ambiguus plants maintained higher basal levels of all cytokinin metabolites as well as chlorophyll content when compared with P. parviflorus. Nitrogen deficiency was associated in this species with accumulation of cis-zeatin-type cytokinins, which preceded abscission of lower and later on of middle leaves. The achieved results indicate that phenotypic variations in the response to nitrogen deficiency/supplementation are associated with significant quantitative and qualitative differences in the cytokinin pool.

Free access