Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Elizabeth Mitcham x
  • HortTechnology x
Clear All Modify Search

`Bartlett' pears (Pyrus communis L.) were harvested and ripened with and without ethylene in standard field bins at a commercial cannery. Mean firmness and firmness uniformity within a bin was evaluated for ethylene- and nonethylene-treated fruit. Uniformity of firmness among pears within a bin increased as ripening progressed. Applying 100 ppm (10 Pa) of ethylene gas during the first 24 hours of commercial ripening accelerated ripening of `Bartlett' pears held in standard field bins. Improved firmness uniformity would therefore be expected in ethylene-treated fruit commercially ripened to a lower firmness than untreated fruit otherwise ripened and processed at a higher firmness—the improved firmness uniformity was due to the lower firmness and not a specific effect of ethylene on ripening uniformity. When fruit were cold-stored for 20 days at 32 °F (0 °C) before ripening, the mean firmness and firmness uniformity of fruit exposed to ethylene during initial ripening was no different than nonethylene-treated fruit. Results from this study also indicate that fluctuations in ripening room air temperature, under some conditions, might increase firmness variability between fruit within a standard field bin.

Full access

The efficacy of several proprietary plastic pallet cover systems to maintain strawberry (Fragaria ×ananassa) fruit quality during commercial shipment was determined. ‘Albion’ fruit were harvested from farms near Watsonville, CA. Fruit in vented plastic clamshells were palletized and forced-air cooled to 33–35 °F. Different cover systems (CO2 West, PEAKfresh, PrimePro, Tectrol) were placed over the pallets. Pads that released carbon dioxide (CO2) gas were placed inside the CO2 West cover. The Tectrol cover was sealed to the pallet base, a partial vacuum was applied, and pressurized CO2 gas was injected inside. The systems other than Tectrol remained open at the base. Six separate shipments of palletized fruit were transported in refrigerated (32–39 °F) truck trailers to distribution centers in either Florida or Georgia in 2.3–4.7 days. CO2 concentrations within pallets at the beginning and end of transport were highest (11% to 16%) in the sealed Tectrol system and relatively low (0.06% to 0.30%) in the open CO2 West, PEAKfresh, and PrimePro cover systems. Relative to noncovered control fruit, which lost 0.8% fresh weight during shipment, the pallet covers reduced the transport-related weight loss by 38% to 52%. The incidence of fruit decay was low (1.0% to 1.4%) after transport but increased substantially following a 2-day shelf life at 68 °F. However, fruit from the Tectrol pallets exhibited significantly less decay (36%) after shelf life than the CO2 West (39%), noncovered control (41%), PrimePro (42%), and PEAKfresh (43%) pallets. Fruit sensory quality was unaffected by the different pallet cover systems. Our findings show that transporting strawberries in the sealed Tectrol pallet cover system, in which CO2 concentrations were elevated to 11% to 16%, was most effective in complementing current low temperature management practices to maintain fruit quality.

Full access

As part of a larger project to show how fresh fruits and vegetables with enhanced flavor can be successfully handled to improve consumer satisfaction without compromising food safety, key informant interviews were conducted with fruit industry leaders dealing with melons (Cucumis melo and Citrullus lanatus), peaches and nectarines (Prunus persica), pears (Pyrus communis), tomatoes (Solanum lycopersicum), strawberries (Fragaria ×ananassa), and blueberries (Vaccinium sp.). The interview was designed to collect information on industry attitudes and practices related to postharvest handling of more mature fruit, harvest timing, preconditioning, cold chain management, and shipping and handling procedures throughout the supply chain. The current analysis focuses on two key questions from the interviews: 1) To what extent do industry experts believe that better fruit handling and shipping procedures contribute to better taste quality in fruit? 2) To what extent do industry experts believe that better fruit quality will lead to more consumer purchasing? In response to the first question, the majority of respondents (70%) agreed that postharvest handling affects fruit flavor with the most cited themes related to agreement being gentle handling, cold chain management, and harvest timing. Of the respondents who expressed disagreement most acknowledged the importance of postharvest handling, but felt other factors were also important, mainly the variety grown, the shelf life requirements, and the growing conditions. For the second question, 95% of respondents agreed that increased taste quality of fruit would mean increased purchasing and consumption. The primary theme related to agreement was that consumers would repeat purchase after positive eating experiences. Other important factors were the price point of fruit, retail display, product identity, and fruit appearance. With increasing consumer attention to fruit quality and a generally accepted belief among industry representatives that fruit flavor and quality drives consumer demand, there is an opportunity to shift industry practices toward postharvest handing that is conducive to consistently delivering better-tasting fruit to consumers.

Full access