Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Edzard van Santen x
  • HortTechnology x
Clear All Modify Search

Numerous compact pepper (Capsicum annuum) cultivars are available for home gardening. However, evaluations under different environmental conditions are limited. This study aimed to characterize growth and productivity of 14 compact pepper cultivars grown indoors under environmental conditions that simulated a residential space (11 mol·m−2·d−1 provided by white of light-emitting diode fixtures, constant 22 °C, and moderate relative humidity of 40% to 60%) and in a greenhouse with sunlight only. Plants in the greenhouse were generally larger in size and produced more fruit [both in number and total fresh weight (FW)] than those grown indoors. For example, growth index, which is a measure of canopy volume that integrates shoot height and width, and fruit FW were up to 250% and 621% higher in the greenhouse than indoors, respectively. ‘Fresh Bites Red Improved’ and ‘Sweet Yellow’ had the highest fruit FW per plant when grown in the greenhouse (695 g) and indoors (483 g), respectively. All cultivars evaluated in this study are recommended for gardening under sunlight, and most for indoor gardening except for Cosmo, Pinata, and Yellow Tomato, which had the lowest fruit FW when grown indoors (61, 59, and 52 g) and thus, should not be recommended to consumers aiming to maximize fruit yield. In addition, ‘Cayennetta’, ‘Cheyenne’, ‘Hot Tomato Red’, ‘Pinata’, ‘Spicy Jane’, and ‘Sweet Yellow’ were affected by intumescence, which could negatively affect indoor gardening experiences until widespread recommendations to mitigate this disorder become available.

Open Access

Use efficiency of applied nitrogen (N) is estimated typically to be <50% in most crops. In sandy soils and warmer climates particularly, leaching and volatilization may be primary pathways for environmental loss of applied N. To determine the effect of N fertilization rate on the N use efficiency (NUE) and apparent recovery of N fertilizer (APR), a replicated field study with ‘BHN 602’ tomato (Solanum lycopersicum) grown in sandy soils under a fertigated plastic-mulched bed system was conducted using ammonium nitrate as the N source at four different rates (0, 150, 200, and 250 lb/acre). Spring tomato was followed by fall tomato in the same field, a typical cropping sequence in north Florida. Fertigation of N fertilizer was applied weekly in 13 equal doses for both seasons. The highest NUE was 12.05% (spring) and 32.38% (fall), and the highest APR was 6.11% (spring) for the lowest rate of N applied (150 lb/acre). In the fall, APR was unaffected by fertilizer N rates and ranged from 12.88% to 19.39%. Nitrogen accumulation in tomato plants were similar among the three N fertilizer rates applied (150, 200, and 250 lb/acre), though compared with no N fertilizer application, significant increases occurred. Whole plant N accumulation, NUE, and APR declined or remained similar when N rates increased above 150 lb/acre. Additionally, a regression analysis and derivative of the quadratic fresh yield data showed that yields were maximized at 162 and 233 lb/acre N in the spring and fall seasons, respectively.

Open Access