Search Results

You are looking at 1 - 10 of 33 items for :

  • Author or Editor: Ed Stover x
  • HortScience x
Clear All Modify Search
Authors: and

Incidence and severity of Huanglongbing (HLB) disease were assessed in Apr. 2010 among eight citrus cultivars representing diverse scion types growing in commercial groves in Florida's Indian River region, an area with a high incidence of HLB. In each grove, 20 trees of each cultivar were rated for visual HLB symptoms and leaves were collected for quantitative polymerase chain reaction quantification of Candidatus Liberibacter asiaticus (CLas), the presumptive causal agent of HLB. There was a strong correlation between HLB rating and CLas titer (titer represented by Ct, r 2 = 0.37 and 0.40, for whole tree and leaf sample, respectively, both with P < 0.0001) across all cultivars and groves. Although incidence and severity of HLB varied considerably among the groves, scion-specific differences were apparent, even when analyses excluded potentially confounding grove effects. ‘Temple’ tangor showed the most consistently low incidence of HLB symptoms and CLas titer; in contrast, ‘Murcott’ tangor and ‘Minneola’ tangelo had the highest incidence of HLB symptoms and highest CLas titer. These results suggest useful resistance to HLB with reduced symptoms and reduced CLas titer may be found in conventional scion cultivars and further work is needed to assess this potential and its commercial value.

Free access

Analysis of apple (Malus×domestica Borkh.) and citrus thinning experiments indicates that the relationships between cropload, fruit size, and total yield can be used to assess optimal cropload for highest crop value. Mean fruit size increased and total yield declined as the cropload (number of fruit/cm2 trunk cross-sectional area) was reduced through the use of chemical thinners. Because crop value is influenced by fruit size and total yield, intermediate croploads gave the highest economic returns in all experiments evaluated. For `Empire' apple, croploads greater than those expected to provide good return bloom often produced the highest crop value for a single year. In citrus, optimal crop values resulted from a broad range of intermediate croploads. A method is described to analyze optimum cropload from thinning experiments.

Free access

Grapefruit are susceptible to melanose from initial set until fruit diam. is 6-7 cm, which can span 3 months. Common Indian River melanose-control practice has been application of Cu fungicides at petal fall, with reapplication every three wks. through the infection period. Research data were previously used to develop a computer model to estimate Cu levels on fruit and indicate when reapplication is needed to prevent potential infection. The purpose of this study was to compare melanose control using spray timings suggested by the computer model vs. standard 3 week intervals vs. non-sprayed checks and was conducted over 3 years in mature grapefruit groves near Ft. Pierce, Fla. All applications were made using airblast at 1180 L· ha-1. Melanose and melanose-like Cu injury could not be distinguished and were combined in a melanose/Cu marking (MCM) score for each fruit. Separate fruit samples from the interior and exterior of tree canopies were randomly selected from each tree. In no year was there a significant difference in interior fruit MCM from computer model vs. calendar spray timings when treated with standard rates of Cu fungicide. However, rainfall never occurred when calendar-sprayed fruit were projected to be at low Cu levels. In 2 of 3 yrs. exterior fruit in the non-sprayed checks had less MCM than those from trees treated with Cu, indicating that Cu injury predominated over melanose on exterior fruit. In these fruit, MCM increased linearly with maximum fruit Cu concentration, which was lower on trees managed using the computer model. The computer model appears to be a sound approach to managing melanose, but economic benefit over calendar-based spray timing may only become apparent when practiced over numerous groves and seasons.

Free access

Two years of field experiments were conducted in eastern New York to evaluate the efficacy of a multi-step thinning approach on reducing crop load (no. fruit per cm2 trunk cross-sectional area) and increasing fruit size of 'Empire' apple (Malus ×domestica Borkh.). Applications of Endothall (ET) at 80% bloom, NAA + carbaryl (CB) at petal fall (PF), and Accel™ + CB at 10 mm king fruitlet diameter (KFD), alone and in all combinations, were compared to a nonthinned control and to the application of NAA + CB at 10 mm KFD (commercial standard). In both 1996 and 1997, orthogonal contrasts indicated the multi-step treatment significantly increased fruit size, reduced cropload, and reduced yield compared to single applications. Effects on cropload of consecutive treatments were largely predicted by multiplying effects of individual treatments. Although all thinning treatments except for NAA + CB at PF in 1997 significantly reduced cropload, no single treatment thinned sufficiently to ensure good return bloom. Compared to NAA + CB at 10 mm KFD, multi-step thinning with NAA + CB at PF followed by Accel™ + CB at 10 mm KFD produced bigger fruits in both years, and resulted in a higher percentage of spurs carrying a single fruit in 1996. When fruit size was evaluated after removing the effect of cropload (cropload adjusted fruit weight), NAA + CB at PF, Accel™ + CB at 10 mm, and the two applied sequentially, resulted in greater cropload adjusted fruit weight than the nonthinned control in both years, whereas NAA + CB at 10 mm did not. Contrast analysis of treatments with and without ET showed no significant effect of including ET on fruit size, though total cropload was reduced at P = 0.10 and total yield was reduced (P = 0.03 in 1996 and P = 0.12 in 1997). No deleterious effects from multi-step treatments have been observed. All thinning treatments significantly increased return bloom in 1996 and 1997 compared to the control with little difference observed between treatments. Chemical names used: naphthalene acetic acid (NAA); 1-naphthyl-N-methylcarbamate [carbaryl (CB)]; 6-benzyladenine [BA (Accel™)]; 7-oxabicyclo (2,2,1) heptane-2,3 dicarboxylic acid [ET (Endothall™)]

Free access

Currently, 94% of California fig production is dried or otherwise processed, but there is interest in expanding fresh fig sales. Since cultivars dominating the industry were largely selected for dried fig use, the fig collection of the National Clonal Germplasm Repository (NCGR) in Winters, Calif., was screened for traits of interest in fresh fruit production. For some traits, the bearing collection of 137 accessions was screened, while for most traits, data was collected on a core group of 30 accessions. While current commercial cultivars feature flavors of honey or caramel, some NCGR accessions have bright fruity flavors, reminiscent of berries or citrus, as well as noticeable acidity. Considerable variation was observed for time of maturity. Breba (figs on previous year's wood ripe in June/July) production was markedly greater in `King' than in any other core-group genotype, with ≈3× more fruit per branch than the next most breba-productive variety and 8× higher than the commercial standards. Earliness of ripening in the large collection was most pronounced in `Yellow Neches', `Orphan', and `Santa Cruz Dark', with 3× as many ripe fruit per tree in early August as the earliest commercial standard. Several commercial standards scored among the varieties with greatest late-season production (≈200 fruit per tree ripe after mid-September), comparing favorably with `Zidi', `Panachee', and `Ischia Black', among others. The SSC at commercial ripeness ranged from 13% to 19%, and SSC at tree-ripeness averaged 30% higher than in commercially ripe fruit. Several accessions were observed to have fruit traits that might also contribute to sustained quality through market channels.

Free access

Wind-induced blemishing known as windscar and lesions from the disease melanose (caused by Diaporthe citri) are two of the most important causes of fresh grapefruit (Citrus paradisi) cullage in Florida. Copper hydroxide fungicides are the primary means of controlling melanose, but high air velocities from passing sprayers have been suspected of increasing windscar. In 1998 and 1999, airblast applications of Cu(OH)2 (1.7 kg·ha-1 Cu) were made at a range of early fruit development stages to a fresh grapefruit orchard in the Indian River region of Florida. These applications supplemented aerial sprays of Cu(OH)2 that were made uniformly across the entire experimental site at biweekly intervals beginning near full bloom. During the commercial harvest period fruit were sampled from three regions (interior, upper exterior, and lower exterior) of each treatment tree and were evaluated for percentage of fruit surface covered by windscar and severity of melanose. Airblast applications did not affect windscar in either year, but windscar was significantly greater from the upper exterior of the canopy, which is likely to experience the highest natural wind velocities. From these data, it appears unlikely that airblast applications significantly contribute to windscar of Indian River grapefruit. In 1998, no trees receiving airblast applications had significantly lower melanose incidence than the trees sprayed only via aircraft; however, trees receiving four airblast applications were scored as having higher apparent melanose on exterior samples than trees receiving most other treatments. This is consistent with high levels of Cu injury on these fruit which can superficially resemble melanose. Following treatment in 1999, trees receiving four airblast applications of Cu(OH)2 had significantly lower melanose scores than trees receiving either no or only early airblast applications, but were not significantly different from trees receiving a single spray 5.5 weeks postbloom. A computer model, which estimates Cu levels on fruit based on fruit growth, rainfall, and application parameters, indicated exterior fruit receiving four airblast sprays had >3 μg·cm-2 [Cu] for 40 days in 1998 but only 10 days in 1999, which reflects increased probability of Cu damage in 1998. It appears that aerial application supplemented by airblast merits further study as an economical means of melanose control.

Free access