Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: E.H. Ervin x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

A variety of organic materials such as humic substances, seaweed extracts (SWE), organic matter, and amino acids are being used as fertilizer supplements in commercial turfgrass management. Among them, SWE and humic acid (HA) are widely used in various biostimulant product formulations. These compounds have been reported to contain phytohormones and osmoprotectants such as cytokinins, auxins, polyamines, and betaines. Manufacturer claims are that these products may supplement standard fertility programs by reducing mineral nutrient requirements while improving stress tolerance. There is a lack of season-long, field-based evidence to support these claims. This study was conducted to investigate the influence of monthly field applications of SWE, HA, and high and low seasonal fertilization regimes on the physiological health of fairway-height creeping bentgrass (Agrostis stolonifera L.). Plots were treated monthly with SWE at 16 mg·m-2 and HA (70% a.i.) at 38 mg·m-2 alone, or in combination, and were grown under low (20 kg·ha-1/month) or high nitrogen (50 kg·ha-1/month) fertilization regimes during 1996 and 1997. Endogenous antioxidant superoxide dismutase (SOD) activity, photochemical activity (PA), and turf quality were measured in July of each year. Superoxide dismutase activity was increased by 46% to 181%, accompanied by a PA increase of 9% to 18%, and improved visual quality of bentgrass in both years. There was no significant fertilization × supplement interaction. Although not part of our original objectives, it was noted that significantly less dollar spot (Sclerotinia homoeocarpa F.T. Bennett) disease incidence occurred in supplement-treated bentgrass. Our results indicate that increased SOD activity in July due to SWE and/or HA applications improved overall physiological health, irrespective of fertilization regime. This suggests that these compounds may be beneficial supplements for reducing standard fertilizer and fungicide inputs, while maintaining adequate creeping bentgrass health.

Free access

Ultraviolet-B [UV-B (280-320 nm)] radiation is one of the major factors causing quality decline of transplanted sod. Pigments and antioxidants are associated with plant stress resistance, but their roles in turfgrass tolerance to UV-B damage are not well understood. The objectives of this study were to determine if kentucky bluegrass (Poa pratensis L.) cultivars with darker green genetic leaf color possessed greater pigment and antioxidant defense capacities and if such characteristics were associated with greater resistance to UV-B. Two cultivars, `Moonlight' (dark green) and `Limerick' (light green), were selected and subjected to continuous, artificial UV-B radiation (70 μmol·m-2·s-1). UV-B irradiation reduced turf quality by 58% (`Moonlight') and 77% (`Limerick') relative to day 1 when measured 10 days after initiation of UV-B exposure. Higher canopy photochemical efficiency (PEc) was found in `Moonlight' relative to `Limerick' under UV-B stress and during recovery. `Moonlight' contained greater levels of chlorophyll (1.5 to1.6-fold), carotenoids (1.3-fold), superoxide dismutase [SOD (1.0-fold)] and catalase [CAT (1.5-fold)] than `Limerick' when measured at 10 days after UV-B initiation. Turfgrass quality and PEc were positively correlated with pigments (chlorophyll and carotenoids) and antioxidant enzymes (SOD and CAT), and negatively correlated with lipid peroxidation. The results suggest that selecting dark-green cultivars with greater pigment content and antioxidant activity may be an effective approach for turfgrass breeders and sod producers to improve tolerance of newly transplanted sod to environments with higher UV-B radiation.

Free access