Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Drew C. McLean x
- HortScience x
Several Florida cities and counties ban fertilization during the summer rainy season (fertilizer blackout). Little research is available to support or contradict the underlying justifications for these policies. We used large-volume lysimeters to address the impacts of several fertilization regimes on plant growth and aesthetics of sweet viburnum (Viburnum odoratissimum Ker Gawl.) and nitrogen (N) leaching from landscape beds during shrub establishment and maintenance. Three levels of N fertilization (98, 195, and 293 kg·ha−1), two levels of application method (per plant and broadcast), two levels of fertilization timing (regular and blackout), and an unfertilized control (0 kg·ha−1 N) were applied to lysimeters in a completely randomized design with three replicates (3 × 2 × 2 factorial plus untreated control). Increasing fertilization rate increased plant growth and improved plant quality, but also increased N leaching from lysimeters. Including a summer fertilization blackout period reduced nitrate + nitrite (NO3 + NO2-N) loading from lysimeters during sweet viburnum establishment [0 to 28 weeks after planting (WAP)] compared with year-round fertilization at the same total N rate without adversely impacting plant growth or aesthetics. However, NO3 + NO2-N loads from lysimeters were higher when fertilizers were applied on the summer blackout application schedule during the shrub maintenance period. Targeted (per plant) fertilization beneath the dripline of sweet viburnum at an annual N rate of 195 kg·ha−1 can maintain plant health while limiting N leaching losses on a year-round or blackout fertilization schedule.