Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Dewayne Ingram x
  • HortTechnology x
Clear All Modify Search

The University of Kentucky's Department of Horticulture, led by the extension faculty working with targeted industry associations, facilitated the creation of the Kentucky Horticulture Council to be the voice of a diverse industry. Leadership in industry strategic planning, promoting the opportunities for expansion of the horticulture industry, and educating state agriculture, legislative and university leaders provided a focus of energy and positioned the industry to access emerging resources. Leadership development has been an anticipated byproduct of this process.

Full access

System-level research has resulted in significant advancements in horticultural crop production. Contributions of individual components to production efficiency, cost, and environmental impact have been a focus of such research. Public awareness of the environmental impact of products and services is increasing. Life cycle assessment (LCA) is a tool to study horticultural crop production systems and horticultural services and their individual components on environmental impacts such as the carbon footprint, stated as global warming potential. This manuscript introduces LCA and describes how this tool can be used to generate information important to the industry and consuming public.

Free access

The demand for groundcover plants for landscape use is increasing. Plantable containers are becoming available in sizes appropriate for groundcover plants. Landscapers are seeking ways to decrease the time required to prepare and plant groundcover beds. Studies were conducted in 2011 and 2012 to evaluate plantable containers for a variety of groundcover plants. The study has shown that ‘Bronze Beauty’ ajuga (Ajuga reptans), ‘Herman’s Pride’ lamiastrum (Lamiastrum galeobdolon), ‘Beacon Silver’ lamium (Lamium maculatum), ‘Immergrunchen sedum (Sedum hybridum), ‘Red Carpet Stonecrop’ sedum (Sedum spurium), and ‘Vera Jameson’ sedum (Sedum telephium) were grown to a marketable size from 1.5-inch plugs in 8 weeks in Lexington, KY, when transplanted in May through August. ‘Big Blue’ liriope (Liriope muscari) from bare root bibs required 12 weeks. Plant growth in a 90-mm paper container and 80-mm bioplastic container was similar to that of plants grown in standard 3-inch rigid plastic containers and required 20% less time to transplant into the landscape and grew rapidly after transplanting in the field. Peat containers in this production system yielded smaller plants and slower ground coverage after transplanting in the field than plants grown in the other containers.

Full access

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.

Full access

The understanding, calculation, and comparison of water footprint (WF) among specialty crop growers are confounded by geography, species, and process. This study builds on published models of representative plant production systems developed using life cycle assessment. These models include container production using recycled water in the mid-Atlantic, southeastern, and Pacific northwestern regions of the United States and greenhouse production implementing rainfall capture and overhead and ebb/flood irrigation strategies. Production systems using recycled water compare favorably in consumptive water use (CWU) with those that do not, regardless of the water source. Production systems in geographic locations with high water availability compare favorably with production systems in locations with high water scarcity in WF, but not necessarily CWU.

Open Access

Understanding carbon footprint (CF) terminology and the science underlying its determination is important to minimizing the negative impacts of new product development and assessing positive or negative cradle-to-grave life-cycle impacts. Life cycle assessment has been used to characterize representative field-grown and container-grown landscape plants. The dominant contributor to the CF and variable costs of field-grown trees is equipment use, or more specifically, the combustion of fossil fuels. Most of that impact is at harvest when heavy equipment is used to dig and move individual trees. Transport of these trees to customers and the subsequent transplant in the landscape are also carbon-intensive activities. Field-grown shrubs are typically dug by hand and have much smaller CFs than trees. Plastics are the major contributor to CF of container-grown plants. Greenhouse heating also can be impactful on the CF of plants depending on the location of the greenhouse or nursery and the length and season(s) of production. Knowing the input products and activities that contribute most toward CF and costs during plant production allows nursery and greenhouse managers to consider protocol modifications that are most impactful on profit potential and environmental impact. Marketers of landscape plants need information about the economic and environmental life-cycle benefits of these products, as they market to environmentally conscious consumers.

Open Access