Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Desmond R. Layne x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

The source-sink ratio of l-year-old, potted `Montmorency' sour cherry (Prunus cerasus) trees was manipulated by partial defoliation (D) or continuous lighting (CL) to investigate the phenomenon of end-product inhibition of photosynthesis. Within 24 hours of D, net CO2 assimilation rate (A) of the most recently expanded source leaves of D plants was significantly higher than nondefoliated (control) plants throughout the diurnal photoperiod. Between 2 and 7 days after D, A was 30% to 50% higher and stomatal conductance rate (g,) was 50% to 100% higher than in controls. Estimated carboxylation efficiency(k) and ribulose-1,5-bisphosphate (RuBP) regeneration rate increased significantly within 2 days and remained consistently higher for up to 9 days after D. Leaf starch concentration and dark respiration rate decreased but sorbitol and sucrose concentration increased after D. The diurnal decline in A in the afternoon after D may have been due to feedback inhibition from accumulation of soluble carbohydrates (sucrose and sorbitol) in the cytosol. This diurnal decline indicated that trees were sink limited. By 9 days after D, photochemical efficiency was significantly higher than in control plants. In the long term, leaf senescence was delayed as indicated by higher A and gs in combination with higher chlorophyll content up to 32 days after D. CL resulted in a significant reduction of A, gs, k, variable chlorophyll fluorescence (Fv), photochemical efficiency, and estimated RuBP regeneration rate of the most recently expanded source leaves within 1 day. During the exposure to CL, A was reduced 2- to 3-fold and k was reduced up to 4-fold. The normal linear relationship between A and gs was uncoupled under CL indicating that A was not primarily limited by gs and since internal CO2 concentration was not significantly affected, the physical limitation to A imposed by the stomata was negligible. The decrease in Fv and photochemical efficiency indicated that leaves were photoinhibited within 1 day. The decrease in instantaneous chlorophyll fluorescence after at least 1 day of CL indicated that there was a reversible regulatory mechanism whereby the damage to photosystem II reaction centers was repaired. Leaf chlorophyll content was not altered by 1,2, or 3 days of exposure to CL, indicating that photooxidation of chlorophytl did not occur. The time to full photosynthetic recovery from CL increased as the duration of exposure increased. CL plants that were photoinhibited accumulated significant starch in the chloroplast in a companion study (Layne and Flore, 1993) and it is possible that an orthophosphate limitation in the chloroplast stroma was occurring. D plants that were continuously illuminated were not photosynthetically inhibited. After 7 days of CL, plants that were then partially defoliated yet remained in CL photosynthetically recovered within 5 days to pre-CL values. Under the conditions of this investigation, end-product inhibition of A occurred in young, potted sour cherry trees but the mechanism of action in D plants was different than in CL plants.

Free access

The leaf surface area of l-year-old, potted `Montmorency' sour cherry (Prunus cerasus L.) trees was reduced by punching disks from some or all leaves to determine the threshold level of leaf area removal (LAR) necessary to reduce net CO2 assimilation (A) and whole-plant growth. Removal of 30% of the leaf area of individual leaves reduced A on a whole-leaf basis between 1 and 3 weeks following LAR. Less than 30% LAR was compensated for by higher estimated carboxylation efficiency and ribulose-l,5-bisphosphate (RuBP) regeneration capacity. The threshold level of LAR based on gas exchange of individual leaves was 20%. Although whole-plant dry weight accumulation was reduced at all levels of LAR, a disproportionately large decrease in dry weight occurred as LAR increased from 20% to 30%. This result indicates that 30% LAR exceeded the threshold LAR level that was noted for A (20% LAR). Wound ethylene production induced by leaf-punching ceased after 24 hours, which indicated that wounds had healed and that ethylene, therefore, did not influence A significantly. The observed threshoId of 20% LAR represents a significant compensation ability for sour cherry, but this threshold may change with crop load, environment, or both.

Free access

The influence of increasing levels of trunk damage on vegetative and reproductive capacity of 3- to 5-year-old `Montmorency' sour cherry (Prunus cerasus L.) trees was determined for three seasons. Removal of or damage to bark up to halfway around the trunk circumference minimally affected growth and productivity. The total wound callus produced per tree was related to wound size. Wound repair was variable depending on the type or extent of injury. Removal of damaged bark greatly reduced wound repair. Girdling 75% or 100% of the trunk circumference resulted in no tree mortality at one site and 17% and 50% mortality, respectively, at another. Differentiated phloem in wound callus of trees with 100% bark removal and survival 4 years following injury indicated that vascular reconnection occurred across wounds.

Free access

The utility of isozyme phenotypes for identifying and determining genetic variation in pawpaw cultivars was studied using isoelectric focusing in thin-layer polyacrylamide gels. Based on a sample of 32 clones (cultivars and advanced selections) and 23 enzyme systems, 7 enzymes were found to be polymorphic, involving 9 polymorphic loci [acid phosphatase (ACP), dihydrolipoamide dehydrogenase (DDH), malic enzyme (ME), phosphoglucoisomerase (PGI), phosphoglucomutase (PGM), peroxidase (PRX), and shikimate dehydrogenase (SKD)]. Altogether these 9 loci and 32 clones yielded 28 multi-locus isozymic phenotypes useful for cultivar identification; 24 of the 32 clones were uniquely identified. The allozyme variation in these clones has the average of other long-lived woody perennials of widespread geographic range in temperate regions with insect-pollinated outcrossing breeding systems, secondary asexual reproduction, and animal-dispersed seed. Genetic differentiation among these pawpaw clones, measured by Nei's distance, D, was substantial: 496 pairwise comparisons of genetic distance among the 32 clones indicated that they differed on average of D = 0.068 ± 0.04 and ranged from 0 to 0.188. Cluster analysis (UPGMA) produced a most likely division of the 32 clones into 7 groups; however, these groups did not conform to known pedigree relations. Additional polymorphic enzymes are needed for accurate allozyme-based genetic discrimination.

Free access

Thirty-four extant pawpaw [Asimina triloba (L.) Dunal] cultivars and advanced selections representing a large portion of the gene pool of cultivated pawpaws were investigated using 71 randomly amplified polymorphic DNA (RAPD) markers to establish genetic identities and evaluate genetic relatedness. All 34 cultivated pawpaws were uniquely identified by as few as 14 loci of eight primers. Genetic diversity of the existing gene pool of cultivated pawpaws, as estimated by Nei's gene diversity (He), was similar to that of wild pawpaw populations. The genetic relatedness among the cultivated pawpaws examined by UPGMA cluster analysis separated 34 cultivars and selections into two distinct clusters, a cluster of PPF (The PawPaw Foundation) selections and a cluster including a majority of the extant cultivars selected from the wild and their derived selections. The results are in general agreement with the known selection history and pedigree information available. The consensus fingerprint profile using the genetically defined RAPD markers is a useful and reliable method for establishing the genetic identities of the pawpaw cultivars and advanced selections. This also proved to be an improved discriminating tool over isozyme markers for the assessment of genetic diversity and relatedness. RAPD profiling of data presented in this study provides a useful reference for germplasm curators engaged in making decisions of sampling strategies, germplasm management and for breeders deciding which parents to select for future breeding efforts.

Free access

The North American pawpaw [Asimina triloba (L.) Dunal] has great potential as a fruit crop or as a landscape plant. The influence of incident irradiance on pawpaw seedling growth and development in containers was examined in the greenhouse and outdoors. Root spiraling can be a problem for container-grown pawpaw seedlings; therefore, the influence of paint containing cupric hydroxide [Cu(OH)2] at 100 g·L-1 applied to the interior of containers on plant growth was also examined in a greenhouse environment. In pawpaw seedlings grown outdoors for 11 weeks, low to moderate shading levels of 28%, 51%, or 81% increased leaf number, total leaf area, and total plant dry weight (DW) compared to nonshaded seedlings. A shading level of 81% decreased the root to shoot ratio by half compared to nonshaded plants. Shading of 98% reduced leaf number, leaf size, and shoot, root, and total plant DW. Shading increased leaf chlorophyll a and b concentrations for pawpaw seedlings grown outdoors, while it decreased average specific leaf DW (mg·cm-2). In a separate greenhouse experiment, pawpaw seedlings subjected to shade treatments of 0%, 33%, 56%, 81%, or 98% did not respond as greatly to shading as plants grown outdoors. Greenhouse-grown plants had greater total and average leaf area under 33% or 56% shading than nonshaded plants; however, shading >56% reduced root, shoot, and total plant DW. Total shoot DW was greater in greenhouse grown plants with 33% shading compared to nonshaded plants. Pawpaw seedlings in control and most shade treatments (33% to 81%) in the greenhouse environment had more leaves and greater leaf area, as well as larger shoot, root, and total plant DW than seedlings in similar treatments grown outdoors. The greenhouse environment had a 10% lower irradiance, a 60% lower ultraviolet irradiance, and a significantly higher (1.23 vs. 1.20) red to far-red light ratio than the outdoors environment. Treatment of container interiors with Cu(OH)2 decreased total and lateral root DW in nonshaded seedlings, and it adversely affected plant quality by causing a yellowing of leaves and reduction of chlorophyll levels by the end of the experiment in shaded plants. Growth characteristics of pawpaw seedlings were positively influenced by low to moderate shading (28% or 51%) outdoors and low shading (33%) in the greenhouse. Seedlings did not benefit from application of Cu(OH)2 to containers at the concentration used in this study. Commercial nurseries can further improve production of pawpaw seedlings using low to moderate shading outdoors.

Free access

As a new National Clonal Germplasm Repository for Asimina species at Kentucky State University (KSU), of major concern to us is the genetic variation within our germplasm collection. The present study investigated the extent of genetic diversity for the pawpaw germplasm in our collection and the geographical pattern of genetic diversity among populations using isozyme markers. Allozyme diversity was high in Asimina triloba (L.) Dunal (Annonaceae) collected from all nine different states, as is typical for temperate woody perennial, widespread and outcrossing plant species. Averaged across populations, mean number of alleles per locus (A), percent polymorphic loci (P), effective number of alleles per locus (Ae), and expected heterozygosity (He) were 1.54, 43.5, 1.209, and 0.172, respectively. Significant deviations from Hardy-Weinberg equilibrium were found in nine populations at an average of 4.8 loci. Observed heterozygosity was higher than expected. Partitioning of genetic diversity showed that 88.2% resided within populations. The proportion of genetic diversity among populations (Gst = 0.118; FST = 0.085) was either lower than or within the range of those species with similar ecological and life-history traits. The mean genetic identity among populations was high (I = 0.988). An analysis using UPGMA clustered most populations as one major group, with the southernmost (Georgia) and the westernmost (Illinois) populations readily separated from the main group. The relationships discovered by principal component analysis (PCA) were similar to those revealed by UPGMA. In addition, PCA separated the northernmost population (New York) from the major group. Sampling strategies for future germplasm collection of A. triloba are also discussed.

Free access

Twelve, 10-base primers amplified a total of 20 intense and easily scorable polymorphic bands in an interspecific cross of PPF1-5 pawpaw [Asimina triloba (L.) Dunal.] × RET (Asimina reticulata Shuttlew.). In this cross, all bands scored were present in, and inherited from, the A. triloba parent PPF1-5. Nineteen of the 20 bands were found to segregate as expected (1:1 or 3:1) based on chi-square goodness-of-fit tests, and were subsequently used to evaluate genetic diversity in populations of A. triloba collected from six states (Georgia, Illinois, Indiana, Maryland, New York, and West Virginia) within its natural range. Analysis of genetic diversity of the populations revealed that the mean number of alleles per locus was A = 1.64, percent polymorphic loci was P = 64, and expected heterozygosity was He = 0.25. No significant differences were found among populations for any of the polymorphic indices. Partitioning of the population genetic diversity showed that the average genetic diversity within populations was Hs = 0.26, accounting for 72% of the total genetic diversity. Genetic diversity among populations was Dst = 0.10, accounting for 28% of the total genetic diversity. Nei's genetic identity and distance showed a high mean identity of 0.86 between populations. Genetic relationships among the populations examined by unweighted pair-group mean clustering analysis separated the six populations into two primary clusters: one composed of Georgia, Maryland, and New York, and the other composed of Illinois, Indiana, and West Virginia. The Georgia and Indiana populations were further separated from the other populations within each group. This study provides additional evidence that marginal populations within the natural range of A. triloba should be included in future collection efforts to capture most of the rare and local alleles responsible for this differentiation.

Free access

Pawpaw (Asimina triloba) produces the largest fruit native to the United States. Six linkage groups were identified for A. triloba using the interspecific cross [PPF1-5 (A. triloba) × RET (A. reticulata Shuttlw. ex Chapman)], covering 206 centimorgans (cM). A total of 134 dominant amplification fragment length polymorphism (AFLP) markers (37 polymorphic and 97 monomorphic) were employed for estimating the genetic diversity of eight wild populations and 31 cultivars and advanced selections. For the wild populations, the percentage of polymorphic loci over all populations was 28.1% for dominant markers and Nei's genetic diversity (He) were 0.077 estimated by 134 dominant markers. Genetic diversity and the percentage of polymorphic loci estimated using only polymorphic dominant AFLPs were 0.245 and 79%, respectively, which are comparable with other plant species having the same characteristics. Estimated genetic diversity within populations accounted for 81.3% of the total genetic diversity. For cultivars and advanced selections, genetic diversity estimated by 134 dominant markers was similar to that of wild pawpaw populations (He = 0.071). Thirty-one cultivars and advanced selections were delineated by as few as nine polymorphic AFLP dominant loci. Genetic relationships among wild populations, cultivars and advanced selections were further examined by unweighted pair group method with arithmetic mean (UPGMA) of Nei's unbiased genetic distance. The genetic diversity estimated for wild populations using the clustered polymorphic markers was lower than the result estimated using the nonclustered polymorphic markers. Therefore, this study indicates that the number of sampled genomic regions, instead of the number of markers, plays an important role for the genetic diversity estimates.

Free access

Growth chambers constructed of photoselective plastic films were used to investigate light quality effects on flowering and stem elongation of six flowering plant species under strongly inductive and weakly inductive photoperiods. Three films were used: a clear control film, a far red (FR) light absorbing (AFR) film and a red (R) light absorbing (AR) film. The AFR and AR films intercepted FR (700 to 800 nm) and R (600 to 700 nm) wavelengths with maximum interception at 730 and 690 nm, respectively. The phytochrome photoequilibrium estimates of transmitted light for the control, AFR, and AR films were 0.71, 0.77, and 0.67. The broad band R:FR ratios were 1.05, 1.51, and 0.77, respectively. The photosynthetic photon flux was adjusted with neutral density filters to provide similar light transmission among chambers. Zinnia elegans Jacq., Dendranthema×grandiflorum Kitam. (chrysanthemum), Cosmos bipinnatus Cav., and Petunia×hybrida Vilm.-Andr. plants grown under the AFR film were shorter than control plants. The AFR film had no effect on height of Antirrhinum majus L. (snapdragon) or Rosa×hybrida (miniature rose). Anthesis of zinnia, chrysanthemum, cosmos (short-day plants), and miniature rose (day-neutral plant) was not influenced by the AFR films. Anthesis of petunia and snapdragon (long-day plants) was delayed up to 13 days by AFR films under weakly inductive photoperiods. In petunia, initiation and development of floral structures were not affected by the AFR films during strongly inductive photoperiods. However, during weakly inductive photoperiods, initiation of the floral primordia was significantly delayed and overall development of the floral meristem was slower than control plants indicating that the AFR films could increase the production time if long-day plants were produced off-season. Daylength extension with electric light sources could overcome this delay in anthesis yet achieve the benefit of AFR films for height reduction without the use of chemical growth regulators.

Free access