Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Denise L. Olson x
Clear All Modify Search

Coconut coir dust is being marketed as a soilless medium substitute for sphagnum peat moss that inhibits fungus gnat (Bradysia sp.) development. However, little information is available on the effects of coconut coir dust on Bradysia sp. In a laboratory study we examined the effect of substituting coconut coir dust for peat moss, with or without a food source, on the development of fungus gnats. An average of less than one adult emerged when 20 fungus gnat eggs were provided with pure or sterilized peat moss or coconut coir. A significantly higher number of adults (11.5-13) emerged when a food source of 1 g of yeast was added to either soilless potting medium type. The adults required up to 10 fewer days to emerge when food was provided, compared to sterilized and pure media, except for the pure peat moss. In a greenhouse study examining the effects of coir and peat at different textures and different moisture levels on fungus gnat survival, there were significant differences at the different levels of moisture. There was a higher population of larvae in the coarse medium containing peat. In the coir-based media, the fine-textured medium had the highest population level of fungus gnats. There were no significant effects on fungus gnat populations among the different levels of moisture within a medium type. However, there was a tendency for lower populations in the most moist and the driest media and the highest survival in the media that were maintained at 52.5% moisture. Plant growth was best in the media with the lowest number of fungus gnats (coarse coconut coir dust-based and fine and medium peat-based media). These results suggest that it is possible to select growing media that minimize fungus gnat populations, while optimizing plant growth. However, contrary to claims made by growing media producers, coconut coir dust does not necessarily inhibit fungus gnat development.

Free access

A survey conducted at farmers' markets in eastern Kansas showed that more consumers purchased pumpkins for jack-o-lanterns than for cooking. One to four jack-o-lantern pumpkins are purchased annually per consumer. Whether or not the pumpkins are treated with insecticides to control squash bugs and regardless of their intended use, consumers preferred U.S. no. 1 grade, which sell at the higher retail price of $0.33/kg. At least 90% of the consumers surveyed would pay 20% more than the retail price for insecticide-free pumpkins. About two-thirds of those polled would pay 30% more. Cost-benefit data indicate that the higher prices consumers would pay may not be sufficient for growers to produce insecticide-free pumpkins economically using only biological control. However, if biological control is integrated with host-plant resistance, the higher prices may be sufficient for growers to produce insecticide-free pumpkins.

Full access

Optimizing growing conditions and, thereby, plant growth reduces the susceptibility of plants to many disease and insect pest problems. Educating lawn or landscape management professionals and homeowners about plant health management reduces the need for chemical intervention. Pesticides combined with N and P fertilizers contribute to water pollution problems in urban areas; thus, it is important to manage the amount, timing, and placement of chemicals and fertilizers. To educate consumers applying pesticides and fertilizers in residential gardens, we must educate the sales representatives and others who interact most closely with consumers. Evidence suggests that knowledge about the effects of chemicals is limited and that warning labels are not read or are ignored. Integrated pest management (IPM) offers alternatives to conventional chemical treatments, but such methods are not used commonly because of their relatively high cost and their uncertain impact on pests. Pest detection methods and using pest-resistant plants in landscapes are simple and, in many cases, readily available approaches to reducing the dependence on chemical use. Research on effective, low-cost IPM methods is essential if chemical use in landscape management is to decrease. Current impediments to reducing the pollution potential of chemicals used in the landscape include the limited number of easily implemented, reliable, and cost-effective alternative pest control methods; underfunding of research on development of alternative pest control measures; limited knowledge of commercial operators, chemical and nursery sales representatives, landscape architects, and the general public concerning available alternatives; reluctance of the nursery industry to produce, and of the landscape architects to specify the use of, pest-resistant plant materials; lack of economic or regulatory incentive for professionals to implement alternatives; inadequate funding for education on the benefits of decreased chemical use; and the necessity of changing consumer definition of unacceptable plant damage. We need to teach homeowners and professionals how to manage irrigation to optimize plant growth; use sound IPM practices for reducing disease, weed, and insect problems; and minimize pollution hazards from fertilizers and pesticides.

Full access

Pesticides have been the primary method of pest control for years, and growers depend on them to control insect and disease-causing pests effectively and economically. However, opportunities for reducing the potential pollution arising from the use of pesticides and fertilizers in environmental horticulture are excellent. Greenhouse, nursery, and sod producers are using many of the scouting and cultural practices recommended for reducing the outbreak potential and severity of disease and insect problems. Growers are receptive to alternatives to conventional pesticides, and many already use biorational insecticides. Future research should focus on increasing the effectiveness and availability of these alternatives. Optimizing growing conditions, and thereby plant health, reduces the susceptibility of plants to many disease and insect pest problems. Impediments to reducing the use of conventional pesticides and fertilizers in the environmental horticulture industry include 1) lack of easily implemented, reliable, and cost-effective alternative pest control methods; 2) inadequate funding for research to develop alternatives; 3) lack of sufficient educational or resource information for users on the availability of alternatives; 4) insufficient funding for educating users on implementing alternatives; 5) lack of economic or regulatory incentive for growers to implement alternatives; and 6) limited consumer acceptance of aesthetic damage to plants. Research and broadly defined educational efforts will help alleviate these impediments to reducing potential pollution by the environmental horticulture industry.

Full access