Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: David Llewellyn x
- HortTechnology x
Hanging basket (HB) production alters the light environment in the lower canopy of ornamental greenhouses by intercepting and altering the spectral quality of incoming light. If shading is sufficiently high, the quality of the lower crops can be reduced. This work investigated changes in light quantity and quality at the lower crop level caused by HB production in Ontario, Canada. Light sampling occurred at three commercial greenhouse facilities throughout the Spring 2012 HB season. The greenhouses represented a range of HB densities (1.8, 2.4, and 3.0 baskets/m2) and different HB canopy architectures (one, two, and three tiers of HBs). Light samples were taken at three fixed locations within each greenhouse facility: outside, HB level, and lower crop level. Photosynthetically active radiation (PAR) was logged continuously at each location within each greenhouse environment. Spectral scans were made at each sampling location, within each greenhouse facility, at various times throughout the season to assess how HB production altered the red to far red ratio (R:FR) at lower crop level. As the season progressed, outdoor daily light integrals (DLIs) more than doubled from <20 to >40 mol·m−2·d−1. Light reduction caused by polyethylene films and structural components varied among locations, but remained steady throughout the season, averaging 48.3% for the three locations. As the HB crops matured, the rate of decrease in PAR at lower crop level varied according to facility and HB density with mean reductions of 42.5%, 32.6%, and 37.7% for the one-, two-, and three-tiered facilities, respectively. Mean lower crop level DLIs were all very similar, between 9.4 and 9.9 mol·m−2·d−1. Accordingly, there may be insufficient light below HB canopies to produce high-quality crops of many varieties of bedding plants that are commonly grown in Ontario. The one- and two-tiered systems reduced the R:FR at lower crop level by 14% and 10%, respectively, whereas the three-tiered system caused no reduction. More work is required to determine if the observed far red shift is sufficient to alter crop quality. These case studies provide a backdrop against which to help determine and interpret horticultural management strategies for a variety of greenhouse crops.
One principle for reducing undesirable stem extension in greenhouse production is to counteract the decrease in red-to-far red ratio that occurs naturally during twilight periods. This study evaluated three lighting treatments on the morphology of easter lily (Lilium longiflorum): 1) a 1-hour end-of-day treatment providing 20 μmol·m−2·s−1 of monochromatic red light (EOD R), 2) blackout curtains closed 45 to 75 minutes before sunset and kept closed until 0 to 60 minutes after sunrise (BO), and 3) a control with natural twilight (CTRL). Plants under the BO treatment were 11% shorter than CTRL, while plants exposed to EOD R did not differ in height compared with BO or CTRL. There were no treatment effects on any other measured parameters, including aspects of flowering.