Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: David Llewellyn x
- HortScience x
In greenhouse ornamental crop production, bedding plants grown below high densities of hanging baskets (HBs) tend to be of lower quality. Hanging basket crops can decrease the red to far red ratio (R:FR) of the growing environment below; however, the extent to which decreased R:FR affects plant morphology and flowering of the lower-level crops is unknown. The present study examined effects of R:FR on morphology and flowering of marigold ‘Antigua Orange’ (Tagetes erecta), petunia ‘Duvet Red’ (Petunia ×hybrida), calibrachoa ‘Kabloom Deep Blue’ (Calibrachoa ×hybrida), and geranium ‘Pinto Premium Salmon’ (Pelargonium ×hortorum). Five R:FR light treatments were provided ranging from R:FR 1.1 (representing unfiltered sunlight) to R:FR 0.7 (representing shaded conditions under HBs) using light-emitting diodes (LEDs) in growth chambers, each with identical photosynthetically active radiation (PAR) (400–700 nm) and FR added to achieve the target R:FR ratio. Two experiments using the same R:FR treatments were conducted with day/night temperature regimes of 20 °C/18 °C and 25 °C/21 °C, respectively. In the second experiment, a fluorescent light treatment was included. The results of the second experiment were more dramatic than the first, where reducing R:FR from 1.1 to 0.7 increased height by 11%, 22%, and 32% in marigold, petunia, and calibrachoa, respectively, and increased petiole length in geranium by 10%. Compared with R:FR 1.1, the R:FR 0.7 shortened the time to the appearance of first flower bud by 2 days in marigold, whereas flowering was minimally affected in other species. Compared with pooled data from the LED treatments, fluorescent light increased relative chlorophyll content for all species, reduced height in marigold, petunia, calibrachoa, and geranium by 26%, 67%, 60%, and 48%, and reduced stem dry weight by 28%, 39%, 21%, and 31%, respectively. The differences in morphology observed under fluorescent light compared with LED R:FR treatments indicate that light quality manipulation is a potential alternative to chemical growth regulators in controlled environments such as greenhouses and growth chambers.
Low natural daily light integrals (DLIs) are a major limiting factor for greenhouse production during darker months (e.g., October to February in Canada). Supplemental lighting (SL) is commonly used to maintain crop productivity and quality during these periods, particularly when the supply chain demands consistent production levels year-round. What remains to be determined are the optimum SL light intensities (LIs) for winter production of a myriad of different commodities. The present study investigated the growth and yield of sunflower (Helianthus annuus L., ‘Black oil’), kale (Brassica napus L., ‘Red Russian’), arugula (Eruca sativa L.), and mustard (Brassica juncea L., ‘Ruby Streaks’), grown as microgreens, in a greenhouse under SL light-emitting diode (LED) photosynthetic photon flux density (PPFD) levels ranging from 17.0 to 304 μmol·m−2·s−1 with a 16-hour photoperiod (i.e., supplemental DLIs from 1.0 to 17.5 mol·m−2·d−1). Crops were sown in a commercial greenhouse near Hamilton, ON, Canada (lat. 43°14′N, long. 80°07′W) on 1 Feb. 2018, and harvested after 8, 11, 12, and 12 days, resulting in average natural DLIs of 6.5, 5.9, 6.2, and 6.2 mol·m−2·d−1 for sunflower, kale, arugula, and mustard, respectively. Corresponding total light integrals (TLIs) ranged from 60 to 188 mol·m−2 for sunflower, 76 to 258 mol·m−2 for kale, 86 to 280 mol·m−2 for arugula, and 86 to 284 mol·m−2 for mustard. Fresh weight (i.e., marketable yield) increased asymptotically with increasing LI and leaf area increased linearly with increasing LI, in all genotypes. Hypocotyl length of mustard decreased and hypocotyl diameter of sunflower, arugula, and mustard increased with increasing LI. Dry weight, robust index, and relative chlorophyll content increased and specific leaf area decreased in kale, arugula, and mustard with increasing LI. Commercial microgreen greenhouse growers can use the light response models described herein to predict relevant production metrics according to the available (natural and supplemental) light levels to select the most appropriate SL LI to achieve the desired production goals as economically as possible.
Intercropping can increase land use efficiency in high tunnel crop production, but it may also lead to decreases in yield and quality of main crops due to the potential competition for resources. This study evaluated the agronomic viability of intercropping snow pea (Pisum sativum L., ‘Ho Lan Dou’) with cherry tomato (Solanum lycopersicum L. var. cerasiforme ‘Sarina hybrid’) without additional inputs of water and fertilizers on peas in an organic high tunnel production system under Southern Ontario climate conditions in Guelph, Ontario, Canada (lat. 43.5 °N, long. 80.2 °W) during 2015 and 2016. In each 80-cm-wide bed, the tomato crops were planted alternately in double rows spaced 30 cm apart, with in-row spacing of 110 cm, which resulted in a planting density of ≈24,000 plants/ha. The snow pea seeds were sown between the tomato plants (i.e., within the same beds as tomatoes) in holes (two seeds per hole), with four rows in each bed and in-row holes spaced 10 cm and at least 25 cm away from the tomato plants, which resulted in a seeding rate of ≈650, 000 seeds/ha. The same amount of water or fertilizer was applied to the intercropping and nonintercropping plots based on the needs of the cherry tomato plants. Plant growth, fruit yield, and quality were compared between tomato plants with and without intercropping. Intercropping with snow peas did not affect total marketable fruit yield, unmarketable fruit percentage, fruit quality traits (e.g., individual fruit weight, soluble solids content, dry matter content, and postharvest water loss), or early-stage plant growth of the cherry tomato. Therefore, it is at least an agronomical possibility to intercrop snow peas with cherry tomatoes on the same beds without additional inputs of water and fertilizer on snow peas in an organic high tunnel system. The additional yield of pea shoots or pods in the intercropping treatment also increased economic gross returns in the high tunnels, although the economic net return might vary with the costs of seeds and labor involved in snow pea growing.
Indoor farming is an increasingly popular approach for growing leafy vegetables, and under this production system, artificial light provides the sole source (SS) of radiation for photosynthesis and light signaling. With newer horticultural light-emitting diodes (LEDs), growers have the ability to manipulate the lighting environment to achieve specific production goals. However, there is limited research on LED lighting specific to microgreen production, and available research shows that there is variability in how microgreens respond to their lighting environment. The present study examined the effects of SS light intensity (LI) on growth, yield, and quality of kale (Brassica napus L. ‘Red Russian’), cabbage (Brassica oleracea L.), arugula (Eruca sativa L.), and mustard (Brassica juncea L. ‘Ruby Streaks’) microgreens grown in a walk-in growth chamber. SS LEDs were used to provide six target photosynthetic photon flux density density (PPFD) treatments: 100, 200, 300, 400, 500, and 600 μmol·m−2·s−1 with a photon flux ratio of 15 blue: 85 red and a 16-hour photoperiod. As LI increased from 100 to 600 μmol·m−2· s−1, fresh weight (FW) increased by 0.59 kg·m−2 (36%), 0.70 kg·m−2 (56%), 0.71 kg·m−2 (76%), and 0.67 kg·m−2 (82%) for kale, cabbage, arugula, and mustard, respectively. Similarly, dry weight (DW) increased by 47 g·m−2 (65%), 45 g·m−2 (69%), 64 g·m−2 (122%), and 65 g·m−2 (145%) for kale, cabbage, arugula, and mustard, respectively, as LI increased from 100 to 600 μmol·m−2· s−1. Increasing LI decreased hypocotyl length and hue angle linearly in all genotypes. Saturation of cabbage and mustard decreased linearly by 18% and 36%, respectively, as LI increased from 100 to 600 μmol·m−2·s−1. Growers can use the results of this study to optimize SS LI for their production systems, genotypes, and production goals.
Until recently, most clonal cannabis (Cannabis sativa) has been propagated using fluorescent lights. Transitioning to light-emitting diodes (LEDs) may be a viable alternative to fluorescent lighting, enabling cultivators to provide specific spectrum treatments to enhance rooting while also saving energy. Vegetative stem cuttings of ‘Gelato-27’, ‘Grace’, and ‘Meridian’ were rooted for 15 days under various combinations of blue (B), red (R), ultraviolet-A (UVA) LEDs, phosphor-converted white (W) LEDs, and a fluorescent (F) control treatment, each with a canopy-level photosynthetic photon flux density (PPFD) of 200 µmol·m−2·s−1 and 16-hour photoperiod. The photon flux ratios of blue (B; 400–500 nm) and red (R; 600–700 nm) narrowband LED treatment combinations were (1) BR, fixed spectrum of B15:R85; (2) B, B75:R25 on day 0–2 followed by B15:R85 on day 2–14; (3) B+UVA, B75:R25 on day 0–2 followed by B15:R85 on day 2–14 plus 15 µmol·m−2·s−1 of UVA on day 7–14; (4) B50, B15:R85 on day 0–7 followed by B50:R50 on day 7–14. The W and F treatments both had static spectra. After the propagation period (i.e., plug stage), a portion of the cuttings under each treatment × cultivar combination were destructively harvested and the remainder were transplanted and grown vegetatively for an additional 21 days (i.e., transplant stage) under a PPFD of ≈275 µmol·m−2·s−1 from ceramic metal halide fixtures and then destructively harvested. Although there were no spectrum treatment effects on the percentage of cuttings that rooted, root index values were higher in cuttings grown under B+UVA vs. F. Further, relative root dry weights of plugs from the B, B+UVA, B50, and F treatments were higher than the W treatment. At the end of the plug stage, there were no spectrum treatment effects on the chlorophyll content index, cuttings grown under the B treatment had thicker stems compared with BR and W treatments, and cuttings grown under the F treatment exhibited the lowest percentage of new aboveground growth. None of the aforementioned spectrum treatment effects from the propagation stage persisted post-transplant. The use of LEDs is a promising, energy-efficient alternative to fluorescent lighting for cannabis propagation and B-enhanced spectrum treatments appear to enhance the rooting performance of clonal cannabis cuttings.
There is a potentially large market for locally produced organic bitter melons (Momordica charantia L.) in Canada, but it is a great challenge to grow this warm-season crop in open fields (OFs) due to the cool and short growing season. To test the feasibility of using high tunnels (HTs) for organic production of bitter melons in southern Ontario, plant growth, fruit yield and quality, and pest and disease incidence were compared among three production systems: OF, HT, and high tunnel with anti-insect netting (HTN) at Guelph in 2015. The highest marketable fruit yield was achieved in HTN (≈36 t·ha−1), followed by HT (≈29 t·ha−1), with the lowest yield obtained in OF (≈3 t·ha−1). Compared with OF, there were several other benefits for bitter melon production in HT and HTN: increased plant growth, advanced harvest timing, reduced pest numbers and disease incidence, and improved fruit quality traits such as increased individual fruit weight and size, and reduced postharvest water loss. In addition to higher yield, HTN had fewer insect pests and disease incidence compared with HT. The results suggest that HTs can be used for organic production of bitter melon in southern Ontario and regions with similar climates. Also, the addition of anti-insect netting to HTs is beneficial to production if combined with an effective pollination strategy.