Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: Daniel Leskovar x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

ABA and drought stress were evaluated on growth morphology and dry weight of pepper (Capsicum annuum L.) seedlings subjected to continuous watering (CV) or alternate watering (AW) subflotation irrigation. When ABA (10-4 m) was sprayed on to leaves 28, 32, or 37 days after seeding (DAS), leaf growth was limited relative to the controls. Root dry weight, basal root count, and diameter decreased in AW compared with CW-treated seedlings. ABA did not influence root growth of the transplants or subsequent total fruit yield. When ABA was applied to leaves at 20,23, or 29 DAS, there was a transient inhibition of leaf weight increase, but root growth was unaffected. Exogenous ABA may have a practical application as a substitute for drought stress to control transplant growth in the nursery. Chemical name used: abscisic acid (ABA).

Free access

Transplants produced with overhead or subirrigation and plants from direct seeding using primed or nontreated `Jupiter' bell pepper (Capsicum annuum L.) seeds were evaluated for growth and yield in the field for 3 years. Early in development, overhead-irrigated (01) transplants had more basal root elongation than subirrigated (SI) transplants; however, root growth differences caused by irrigation systems in the greenhouse were minimized during late ontogeny in the field. Basal, lateral, and taproot dry weights accounted for 81%, 15%, and 4% of the total for transplants and 25%, 57%, and 18% of the total for direct-seeded plants. Direct-seeded plants maintained a more-balanced root, stem, leaf, and fruit dry matter partitioning than transplants, which allocated more dry weight (per unit of root growth) to stems, leaves, and fruits. Over all seasons, transplants exhibited significantly higher and earlier yields than direct-seeded pepper plants, and total yields were similar between SI and OI transplants and between primed and nontreated seeds.

Free access

Excess transpiration relative to water uptake often causes water stress in transplanted vegetable seedlings. Abscisic acid (ABA) can limit transpirational water loss by inducing stomatal closure and inhibiting leaf expansion. We examined the concentration effect of exogenous ABA on growth and physiology of muskmelon (Cucumis melo L.) seedlings during water stress and rehydration. Plants were treated with seven concentrations of ABA (0, 0.24, 0.47, 0.95, 1.89, 3.78, and 7.57 mm) and subjected to 4-day water withholding. Application of ABA improved the maintenance of leaf water potential and relative water content, while reducing electrolyte leakage. These effects were linear or exponential to ABA concentration and maximized at 7.57 mm. Gas-exchange measurements provided evidence that such stress control is attributed to ABA-induced stomatal closure. First, net CO2 assimilation rate and stomatal conductance initially decreased with increasing ABA concentration by up to 95% and 70%, respectively. A follow-up study (≤1.89 mm ABA) confirmed this result with or without water stress and further revealed a close positive correlation between intercellular CO2 concentration and net CO2 assimilation rate 1 day after treatment (r 2 > 0.83). In contrast, ABA did not affect leaf elongation, indicating that stress alleviation was not mediated by leaf area adjustment. After 18 days of post-stress daily irrigation, dry matter accumulation showed a quadratic concentration-response, increasing up to 1.89 mm by 38% and 44% in shoot and roots, respectively, followed by 16% to 18% decreases at >1.89 mm ABA. These results suggest that excess levels of ABA delay post-stress growth, despite the positive effect on the maintenance of water status and membrane integrity. Another negative side effect was chlorosis, which accelerated linearly with increasing ABA concentration, although it was reversible upon re-watering. The optimal application rate of ABA should minimize these negative effects, while keeping plant water stress to an acceptable level.

Free access

Containerized `Lavi' muskmelon [Cucumis melo L. (Reticulatus Group)] transplants were grown in a nursery with two irrigation systems: overhead irrigation (OI) and flotation irrigation (FI). Initially, root development was monitored during a 36-day nursery period. Thereafter, seedling root growth was monitored either in transparent containers inside a growth chamber, or through minirhizotrons placed in the field. During the nursery period, OI promoted increased early basal root growth, whereas FI promoted greater basal root elongation between 25 and 36 days after seeding (DAS). At 36 DAS leaf area, shoot fresh weight (FW) and dry weight (DW), and shoot to root ratio were greater for OI than for FI transplants, while root length and FWs and DWs were nearly the same. Total root elongation in the growth chamber was greater for FI than for OI transplants between 4 and 14 days after transplanting. Similarly, the minirhizotron measurements in the field showed a greater root length density in the uppermost layer of the soil profile for FI than for OI transplants. Overall, muskmelon transplants had greater root development initially when subjected to overhead compared to flotation irrigation in the nursery. However, during late development FI transplants appeared to have a greater capacity to regenerate roots, thus providing an adaptive mechanism to enhance postplanting root development and to withstand transplant shock in field conditions. At harvest, root length density and yield were closely similar for the plants in the two transplant irrigation treatments.

Free access

Studies were conducted to evaluate growth of tomato (Lycopersicon esculentum Mill.) transplants in the field in response to age of transplants in Spring and Fall 1989. Transplants were 2 (2W), 3 (3W), 4 (4W), 5 (SW), or 6 (6W) weeks old. Drip and subseepage irrigation were used. In spring, older transplants produced more shoot and root growth up to 2 (T2) weeks after transplanting. At 3 (T3) and 4 (T4) weeks after transplanting, there were no differences between 4W, 5W, and 6W transplants. These trends were independent of irrigation systems. Total yield and early yield were similar for all transplant ages. In fall, shoot growth increased linearly with increasing transplant age at TO, but not thereafter. Chlorophyll a + b increased over time, but no treatment differences were found at T4. At planting, 2W transplants had a higher Chl a: b ratio than older transplants. This difference was reduced at T1 and T2 and became insignificant at T4. These results indicate that no improvement in yields was obtained using the traditional older transplants. Younger transplants might be used to achieve rapid seedling establishment with-minimal transplant production costs.

Free access

`Sunny' tomato (Lycopersicon esculentum Mill.) containerized transplants were grown with the standard or conventional systems (SS) and with recently developed flotation systems (FS). Standard system and FS transplants, and direct-seeding using coated seeds were evaluated in the field for root and shoot growth and yield at Parrish, Bradenton, and Naples during fall, winter, and spring plantings. Plant growth characteristics were measured weekly before, during, and after transplanting or sowing. In the Parrish and Bradenton Fall 1987 and Bradenton Spring 1988 experiments, SS transplants had greater leaf area, root volume, shoot dry weights, and shoot: root ratios than FS transplants. During early development, the FS transplants had more lateral root growth than SS transplants, but had similar total root growth and horizontal and vertical root distribution after transplanting in the field. Transplants and direct-seeded plants allocated 72% of the total root mass in the upper 0 to 10 cm of the soil. In Fall 1987, SS transplants had between 29% and 41% more fruit yield than FS transplants at Bradenton and Parrish, respectively. In the Naples Winter 1988 and Parrish and Bradenton Fall 1989 experiments, both transplant types had similar fruit yields, but more than direct-seeded plants. Transplants grown with the flotation system are recommended for use provided that seedlings are grown and maintained with minimum hardening before establishment in the field.

Free access

Embryogenic callus growth of sweetpotato [Ipomoea batatas (L.) Lam.] was selectively enhanced by subculture on basal callus proliferation medium modified to contain 15 mm NH4NO3. Embryogenic callus production was doubled on basal callus proliferation medium modified to contain 60 mm K+, while nonembryogenic callus production was reduced 40%. Additions of up to 40 mm NaCl to basal callus proliferation medium did not affect callus proliferation. The development of embryos from calli subculture to embryo production basal medium was unaffected by the KCl or NaCl treatments of the callus proliferation phase. However, embryo production was increased by subculturing callus from callus proliferation medium containing 20 mm NH4 + to embryo production medium containing 10 mm NH4 + Our results demonstrate that changes in mineral nutrition, in addition to growth regulator differences between callus proliferation and embryo production media, are important factors in sweetpotato somatic embryogenesis.

Free access

Spinach (Spinacia oleracea L.) seed germination can be inhibited by high temperatures. An understanding of thermoinhibition in spinach is critical in predicting germination and emergence events. The purpose of this study was 3-fold: 1) to determine seed germination percentage and rate of spinach genotypes—`Cascade', `ACX 5044', `Fall Green', and `ARK 88-354'—exposed to constant and alternating temperatures; 2) to determine the nature and extent of inhibition imposed by the pericarp; and 3) to investigate leachate and oligosaccharide involvement in thermoinhibition. Germination inhibition began at >20 °C constant temperature and was totally suppressed at 35 °C. Alternating temperatures at 30/15 °C (12-hour day/12-hour night) resulted in greater germination than a constant 30 °C. The genotype sensitivity to supraoptimal temperatures was in the order of `ARK 88-354' ≤ `Fall Green' < `ACX 5044' < `Cascade', but the highly thermoinhibited `Cascade' seeds retained the ability to germinate when shifted to lower incubation temperatures. The pericarp inhibited germination, since seeds deprived of the pericarp had ≈90% germination at 30 °C. `ACX 5044' and `Cascade' had higher ABA content in the pericarp than `ARK 88-354' and `Fall Green'. Before imbibition at 30 °C, raffinose levels in each genotype were in the order of `ARK 88-354' > `Fall Green' > `Cascade'. After 48 hours of imbibition, sucrose and glucose levels were highest and raffinose levels were lowest in `ARK 88-354' and `Fall Green' seeds, while `Cascade' seeds remained less active metabolically. These data suggest that the pericarp apparently acts as a physical barrier as well as a source of inhibitors during thermoinhibition.

Free access

Triploid or seedless watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] cultivars often have erratic germination and low seedling vigor. The morphology of the seedcoat on two triploid cultivars—Tri X 313 and Tri X Sunrise—was examined by scanning electron microscopy (SEM) to identify structural differences compared to diploid seeds. Triploid seeds incubated with oxygen-enhanced treatments that included nicking, 1% hydrogen peroxide (H2O2), and 40% oxygen were investigated at low and high medium moisture levels. Triploid seed has a thicker seedcoat with a dense endotesta layer and a larger and highly variable air space surrounding the embryonic axis as compared with diploid seed. All cultivars rapidly imbibed water (≈50% of the original weight) during the first hour of imbibition, with a faster increase for triploids than for diploids. High moisture affected germination to a lesser extent in diploid than triploid seeds. Triploid germination under low medium moisture ranged from 96% to 76%, but was severely reduced to <27% under high medium moisture. Triploid seed germination was significantly improved at high moisture by H2O2 and by 40% oxygen. Triploid watermelon seed is very sensitive to submerged conditions, possibly due to a combination of physiological and morphological defects. The rapid imbibition and excess water collected in the seedcoat and air space surrounding the embryo, could reduce oxygen diffusion and impair metabolic pathways leading to normal germination and seedling development.

Free access