Search Results

You are looking at 1 - 10 of 65 items for :

  • Author or Editor: Daniel Leskovar x
  • HortScience x
Clear All Modify Search

Pepper cv. `Jupiter' plants were field-grown from containerized transplants produced with either overhead (SPl) or sub-flotation (SP2) irrigation, or from direct seeding, in 3 years. Shoot and root growth were measured at frequent intervals. At planting, SPl transplants had larger basal root length and numbers than SP2 transplants. At the end of the growth period, basal, lateral, and taproot dry weights accounted for 81, 15, and 4% of the total for transplants, and 25, 57, and 18% of the total for direct-seeded plants. The coordination of growth (linear logarithm relationship) between root and shoot, changed after fruit set only in transplants. Over all seasons, transplants exhibited significantly higher yields than direct-seeded pepper plants.

Free access

Effective nutrition and irrigation are important nursery strategies to produce high-quality seedlings able to withstand heat and drought stress in the field. The objectives of this study were 2-fold, first to identify the influence of two nitrogen (N) levels (75 and 150 mg·L−1) and two fertigation (FR) methods, overhead (OH) and flotation (FL) of artichoke (Cynara cardunculus cv. Green Globe Improved) transplants on root/shoot growth and leaf physiology during the nursery period. A repeated greenhouse experiment was conducted and morphophysiological measurements were determined at 4 and 7 weeks after seeding (WAS). The second objective was to determine the impact of the nursery treatments (FR method and N level) on the subsequent crop growth and yield under three field irrigation methods [surface drip, subsurface drip, and overhead-linear system (OH-L)]. Field measurements were conducted at 50 and 150 days after field transplanting (DAT) during Fall–Winter 2015. Transplants fertilized with 75 mg·L−1 N (low N) had improved root components as compared to those with 150 mg·L−1 N (high N), especially at 4 WAS. The low N transplants had higher root surface area, root length, root branching, thinner root diameter, and less shoot area than the high N transplants. Wilting for low N transplants was 13.5% less than that for high N at 5 DAT, with a total yield similar or slightly higher than those of high N. Although growth of OH and FL transplants was statistically similar at transplanting, those irrigated with OH (greenhouse) had a 10% higher yield than FL irrigated transplants, regardless of the field irrigation method evaluated. Overall, low N level (75 mg·L−1 N) applied with OH irrigation in the nursery positively improved the transplant root system and transplant quality of artichoke seedlings.

Free access

Shoot and root growth changes in response to handling and storage time in `Sunny' tomato (Lycopersicon esculentum Mill.) transplants were investigated. Transplants, 45 days old, were stored either in trays (nonpulled) or packed in boxes (pulled) for 0, 2, 4, 6, or 8 days at 5 and 15C. Also, 35-day-old nonpulled and pulled transplants were kept in darkness at 20/28C for 0, 1, 2, or 3 days. At SC, pulled transplants had longer and heavier stems, a higher shoot: root ratio, higher ethylene evolution, and lower root dry weight than nonpulled transplants. At 15C, pulled transplants had more shoot growth than nonpulled transplants. Nonpulled, initially 35-day-old transplants had heavier shoots and roots and higher (7.0 t·ha-1) yields of extra-large fruit than pulled transplants (4.1 t·ha-1), but there were no differences in the total yields of marketable fruits.

Free access

Studies were conducted to examine the effects of pruning treatments applied to spring-transplanted bell peppers (Capsicum annuum L.) on marketable fruit yield in late summer and fall. Control plants were set in the field in early May 1997 (Oklahoma) and Apr. 1998 (Oklahoma and Texas) and harvested weekly into October (Oklahoma) or periodically into December (Texas). In 1997, all four treatments (involving height and method of pruning) reduced total marketable fruit weight, but differences among treatments were nonsignificant. In Oklahoma in 1998, plants were mowed on 27 July at an average height of ≈24 cm. Mowed plants produced less total marketable fruit weight but more U.S. Fancy fruit than did control plants, while weight of U.S. No. 1 fruit was not affected. In Texas in 1998, plants mowed on 4 Sept. at a height of ≈20 cm produced more than twice the weight of U.S. No. 1 fruit and fewer cull fruit than did control plants. Nonpruned transplants set in the field in Summer 1998 (both Oklahoma and Texas) produced low marketable yields. Maintaining spring-transplanted bell peppers is a viable technique for fall pepper production, and the highest total marketable yields may be obtained if these plants are not mowed. However, mowing offers an opportunity for increased fall production of premium fruit, and mowed plants would be easier to manage than nonpruned plants.

Free access

Studies were conducted to examine the effects of pruning treatments applied to spring-transplanted bell peppers (Capsicum annuum L.) on marketable fruit yield in late summer and fall. Control plants were set in the field in early May 1997 (Oklahoma) and Apr. 1998 (Oklahoma and Texas) and were harvested weekly into October (Oklahoma) or periodically into December (Texas). In 1997, there were no differences in total marketable fruit weight among four treatments involving height and method of pruning, but all reduced total marketable fruit weight relative to the control. In Oklahoma in 1998, the control was compared to plants mowed on 27 July at an average height of ≈24 cm. Mowed plants produced less total marketable fruit weight but more U.S. Fancy fruit than control plants. Also, control and mowed plants did not differ in weight of U.S. no. 1 fruit. In Texas in 1998, the control was compared to plants mowed on 4 Sept. at a height of ≈20 cm. Mowed plants produced more than double the weight of U.S. no. 1 fruit and fewer cull fruit than control plants. Nonpruned transplants set in the field in Summer 1998 (Oklahoma and Texas) gave low marketable yields. Maintaining spring-transplanted bell peppers is a viable technique for fall pepper production, and the highest total marketable yields may occur if these plants are not mowed. However, mowing offers an opportunity for increased fall production of premium fruit, and mowed plants would be easier to manage than unpruned plants.

Free access

The effect of cell volume and age of `Texas Grano 1015Y' onion transplants on survival, growth, and yield were evaluated. Transplant ages and cell volume were 5, 7, 9, and 11 weeks (W) and 6.5 cm3 and 20.0 cm3 in Florida; and 6, 8, 10, and 12W, and 4.0 and 7.1 cm3 in Texas. In Florida, total yields were unaffected by transplant age and cell volume, but jumbo size bulbs increased with increasing age from 5 to 9W in 6.5 cm3 cells. Bulb size increased significantly for 11W transplants only in 20.0 cm3 cells. In Texas, survival was reduced for 6W compared to ≥8W transplants. At planting, root count increased linearly with age. Cell volume did not affect root count, plant height, or leaf number, but shoot dry weight was greater in 7.1 cm3 compared to 4.0 cm3. Total jumbo and large size yields were highest for ≥10W in 7. 1 cm3 and ≥8W in 4.0 cm3 cells. Total yields were unaffected by cell size but seedlings in 4.0 cm3 had a 16% decrease of jumbo size compared to 7.1 cm3. The use of 10 and 12W transplants produced in small cell sizes may be viable for onion establishment.

Free access

The objective of this study was to determine the effects of 1-MCP preharvest spray application on harvest synchrony, maturity, fruit quality, and marketable yield of cantaloupe. Seeds were planted in a commercial field on 16 Mar. (early planting, cv. Caravelle) and 4 Apr. (late planting, cv. Mission) 2005. Standard plant population, fertilization, irrigation, and pest control practices were followed. We evaluated three 1-MCP rates (5, 10, or 25 g·ha-1 a.i.) at three preharvest spraying times for the early (22, 15, and 7 days before harvest, DBH) or once for the late planting experiment (4 DBH). An additional test (late planting) compared fruit quality after storage for melons dipped with 1-MCP (0 or 10 mg·L-1). Fruits were harvested six times during June 2005 (early planting) and once on 19 July 2005 (late planting) and fruit quality parameters were measured at harvest and after storage. The preharvest 1-MCP application slightly delayed maturity and improved early harvest synchrony, but did not affect total marketable or yield by fruit size regardless of timing or rate of application. There was no effect of 1-MCP rate or application timing on fruit quality at harvest or after cold storage, except for an increased in fruit firmness (10%) in one of the six harvests. However, fruits treated with 1-MCP spray at 25 g·ha-1 a.i. (late planting) had higher firmness than those treated with lower rates after 9 days of storage. In addition, 1-MCP postharvest dipping significantly improved fruit firmness; however, a `greening' was evident in the fruit surface. Our results suggest that cantaloupe fruit quality was less affected by early preharvest spray application of 1-MCP applied at less than 25 g·ha-1 a.i. as compared to postharvest applications.

Free access

Restrictions placed on water usage for farmers have prompted the development of irrigation management projects aiming at water savings of economically important crops. The objective of this work was to determine yield, water use efficiency, and leaf quality responses to deficit irrigation rates of processing spinach (Spinacea oleracea L.) cultivars. Three irrigation treatments were imposed with a center pivot system, 100%, 75%, and 50% crop evapotranspiration rates (ETc). Commercial cultivars used were `DMC 09', `ASR 157', and `ACX 3665'. Leaf quality was significantly affected by deficit irrigation rate and cultivar. Leaf yellowness was highest at 50% ETc, and was more evident for `ACX 3665'. The percent excess stem (>10 cm) was higher at 100% ETc. This response was greater in `ACX 3665' than in `ASR 157' and `DMC 09'. Marketable yields were significantly higher for `ASR 157' at either 100% or 75% ETc rates, compared to `DMC 09' and `ACX 3665'. High water use efficiency was also measured at 75% ETc for `ASR 157'. Minimum canopy temperature differences were detected among the irrigation treatments. This work demonstrated that it is possible to reach a 25% water savings in one season, without reducing yields when using vigorous cultivars.

Free access

Initiation, development, and subsequent growth of seedling root and shoot components can have a direct influence on the quality, adaptation, and survival of seedlings, particularly under stress conditions. Taproot, basal, lateral, and adventitious root components (common indicot plants) each have their own development sequence, growth rate, and may have separate functions for subsequent seedling growth and development. Stresses originating in root components may be expressed in shoots affecting dry matter partitioning between roots and shoots. Partitioning and development of root morphological components and root/shoot growth adaptation to stress environments will be presented for various vegetable species. Implications of root developmental differences in relation to field planting methods will be discussed. Understanding seedling morphology, physiology and assimilate partitioning during early ontogeny would assist directing strategies to improve field establishment and ultimately crop production.

Free access