Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Daniel C. Bowman x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

The absorption and assimilation of 15N-labeled urea, (NH4)2 S O4, and KNO applied to the foliage of perennial ryegrass (Lolium perenne L.) turf were examined under a controlled environment. Each source of N was dissolved in deionized water to a final concentration of 25 g N/liter and spray-applied at a rate of 5 g N/m2. Absorption of the fertilizer-N over 48 hours, as measured by 15N analysis of tissue digests, amounted to 35%, 39%, and 40% for the urea, (NH4)2 S O4, and KNO3, respectively. Absorption was also estimated by a washing procedure that measured the urea remaining on the foliage and by the increase in total N in the ryegrass tissue. There were no significant differences between the three methods for absorption of (NH4) 2SO4 and KNO3. The washing method, however, significantly overestimated absorption of urea. Partitioning of the absorbed N between tissues was similar at 48 hours for all three N sources, averaging 32% in new leaves, 52% in old leaves and shoot tissue, and 16% in the roots. Most of the absorbed urea- and NH4 -N was assimilated by 48 hours, whereas only half of the NO3 -N was reduced during that period.

Free access

sand-based rootzones are specified for golf course putting greens because they resist compaction and maintain drainage, even under heavy traffic. Although sands provide favorable physical properties, nutrient retention is generally poor and soluble nutrients like nitrogen (N) are prone to leaching. Laboratory experiments were conducted to evaluate several inorganic soil amendments (clinoptilolite zeolite (CZ), diatomaceous earth, and two porous ceramics), which varied in cation exchange capacity (CEC), and sphagnum peat for their ability to limit N leaching. Columns (35 cm tall × 7.6 cm diameter) were filled with 30 cm of sand-amendment mixtures (8:2 v/v) and NH4NO3 was applied in solution at a N rate of 50 kg·ha-1. Leaching was initiated immediately using 2.5 pore volumes of distilled water in a continuous pulse. Leachate was collected in 0.1 pore volume aliquots and analyzed for NH4 +-N and NO3 --N. All amendments significantly decreased NH4 + leaching from 27% to 88% which was directly proportional to the CEC of the amendments. By contrast, NO3 - losses were consistently high, and no amendment effectively decreased loss compared to nonamended sand. Two amendments with the highest CECs, CZ and a porous ceramic, were selected to further study the effects of amendment incorporation rate, depth, and incubation time on N leaching. Ammonium but not NO3 - leaching was decreased with increasing amendment rate of both products. At 10% amendment (v/v) addition, only 17% to 33% of applied NH4 + leached from the amended sands. Depth of amendment incorporation significantly affected NH4 + leaching, with uniform distribution through the entire 30 cm tall column being more effective than placement within the upper 2.5 or 15 cm. Allowing the NH4NO3 to incubate for 12 or 24 hours following application generally did not affect the amount leached. These results suggest NH4 +-N leaching is inversely related to CEC of the root-zone mixture and that uniform distribution of these CEC enhancing amendments in the root-zone mixtures reduced N leaching to a greater extent than nonuniform distribution.

Free access

Hydration of three commercial hydrophilic polyacrylamide gels in deionized water ranged from 340 to 420 g per gram of gel. Hydration was progressively inhibited by fertilizer salt concentrations from 0 to 20 meq·liter-1. Hydration of the gels in the presence of divalent cations (Ca2+ and Mg2+) and monovalent cations (K+ and NH4 +) at 20 meq·liter-1 was reduced to ≈10% and 20% of maximum, respectively. The valence of the accompanying anion did not affect hydration. Gel hydration was unaffected by urea over the range of 2 to 20 mm. Sequential rinses of the hydrated gels with deionized water completely reversed the inhibition due to the monovalent, but not the divalent, cations. The electroconductivity (EC) of the external solution increased during gel hydration. In the presence of fertilizer salts, the physical properties of a 2 redwood sawdust : 1 sand (v/v) container mix were unaffected by hydrophilic gel additions of 1.2 and 2.4 kg·m-3 (1 × and 2 × the recommended rate, respectively).

Free access

Cumulative evapotranspiration (ETcum) patterns of 10 commercially available cool-season turfgrass species and cultivars were evaluated under progressive water stress in the semi-field conditions using a gravimetric mass balance method in three studies. At the end of water stress, the cultivars were visually scored for green appearance on a 0 (no green) to 10 (100% green) scale. A Gompertz nonlinear model gave a best fit to ETcum vs. days adjusted for pan evaporation variation. Two of the ETcum attributes (ti, the time during which the rate change in ET is zero, and ETmax, the maximum ET rate) estimated from the Gompertz model appeared to reflect efficient water-use attributes in the turfgrass. Among the physiological screening techniques studied, electrolyte leakage, relative water content, and the difference between canopy and air temperature appeared to separate cultivars by drought resistance and water use efficiency (WUE). These physiological attributes were also relatively easy to measure and had high correlations with color score and WUE. Biplot display is a graphical technique in which the interrelationships between the cultivars and water-use attributes can be displayed together. Based on ti, ETmax, color score, and physiological attributes, `Wabash' and `Bristol' Kentucky bluegrass (Poa pratensis L.), `Aurora' hard fescue (Festuca ovina var. duriuscula L. Koch.), and `FRT-30149' fine fescue (F. rubra L.) were identified as cultivars with higher WUE.

Free access