Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Dale J. Bremer x
Clear All Modify Search

Urbanization is increasing the land area covered with turfgrasses, which may affect water quantity and quality. Our objective was to understand lawn-watering habits of homeowners in Olathe and Wichita, KS, based on home value, home age, and lot size. Surveys were mailed to 9992 homeowners in Olathe and 15,534 in Wichita, with a return rate of 12%. Owners of more expensive and/or newer homes were more likely to water frequently, water on a routine schedule, feel it was important to have a green lawn, have an in-ground sprinkler system, and sweep or blow grass clippings and lawn care products off impervious surfaces. Owners of less expensive and/or older homes were more likely to never water or water infrequently, water based on the lawn’s appearance rather than on a routine schedule, consider it less important to have a green lawn; not have an in-ground sprinkler system, and leave grass clippings and lawn care products on impervious surfaces rather than blowing them off. A small percentage of homeowners who swept or blew clippings and/or lawn-care products did so into streets/storm drains. Owners of less expensive and/or older homes were somewhat more likely to engage in this practice. Educational efforts to improve lawn water conservation should be concentrated on homeowners in more expensive and/or newer homes because they water more frequently and routinely. Efforts to protect surface water quality should include homeowners of less expensive and/or older homes.

Free access

Establishment and growth of eastern redbud (Cercis canadensis L.) and pecan [Carya illinoinensis (Wangenh.) K. Koch] were studied where soil surfaces were either covered with each of three common turfgrass species or maintained free of vegetation by the use of an herbicide or an organic mulch layer. Turf species included two cool-season grasses, tall fescue (Festuca arundinacea Schreb.) and Kentucky bluegrass (Poa pratensis L.), and the warm-season bermudagrass [Cynodon dactylon (L.) Pers.]. After two growing seasons, tree caliper of both species was 100% greater in turf-free plots compared with trees in the cool-season grass plots. Root weight of pecans increased nearly 200% when turf was eliminated, and redbud root weight increased nearly 300%. Top weight of redbuds increased 300% and pecans increased 200% when turf was eliminated. Total leaf weight of both species was 300% greater in the turf-free plots, and leaf area increased 200% in both species. Net photosynthesis of redbud trees tended to be higher in the plots without turfgrass, and cool-season grasses inhibited photosynthesis to a greater extent than the warm-season grass. Foliar tissue analysis revealed that nitrogen (N) and potassium (K) were the only elements that increased in concentration when turf was eliminated. However, nutrient concentrations in all treatments were within recommended standard ranges. The results suggest that landscape tree establishment and growth are greatly inhibited by the presence of cool-season turfgrasses and that the inhibition may be more complicated than resource competition.

Free access

Cool-season turfgrasses may experience heat stress during summer. Hybrid bluegrasses (HBGs), crosses between kentucky bluegrass [KBG (Poa pratensis L.)] and native texas bluegrass (Poa arachnifera Torr.), have improved heat tolerance but the mechanisms of heat tolerance are poorly understood. Our objectives were to quantitatively profile membrane lipid molecular species in three cool-season turfgrasses exposed to optimal (22/15 °C, 14/10 h light/dark) and supra-optimal temperatures (35/25 °C and 40/30 °C, 14/10 h light/dark). Grasses included a low heat-tolerant tall fescue [TF (Festuca arundinacea Schreb. ‘Dynasty’)], a mid-heat–tolerant KBG (‘Apollo’), and a heat-tolerant HBG (‘Thermal Blue’). At high temperature, glycolipid digalactosyldiacylglycerol (DGDG) in HBG was 12% and 16% greater than in KBG and TF, respectively, and the ratio DGDG to monogalactosyldiacylglycerol was 19% and 44% greater in HBG than in KBG and TF, respectively. Greater heat tolerance in HBG and KBG was associated with higher contents of phosphatidylethanolamine and phosphatidylglycerol, and with reduced overall unsaturation compared with TF. Overall, 20 lipid molecular species were present in greater amounts and another 20 species in lesser amounts in HBG and KBG than in TF. Results suggest 40 membrane lipid molecules are potential biomarkers for heat tolerance and that compositional changes in membrane lipids in response to heat contribute to differences in heat tolerance among cool-season grasses.

Free access

Successful establishment and growth of newly planted trees in the landscape is dependent on many factors. Weed pressure and water conservation are typically achieved with either organic mulches or chemical herbicides applied over the root ball of the newly planted tree. In the landscape, eliminating turfgrass from the root zone of trees may be more complicated than resource competition. Studies have shown that tall fescue (Festucaarundinaceae Schreb.) has allelopathic properties on pecan trees [Caryaillinoiensis (Wangenh.) K. Koch]. Well-manicured tall fescue turf in the landscape may have negative effects on the establishment and growth of landscape trees as well. A study was designed to examine the effects of popular turfgrasses on the growth of newly planted pecan and redbud (Cerciscanadensis L.). Results demonstrate that the presence of turfgrass over the root zone of trees negatively impacts tree growth. Through two growing seasons, every growth parameter measured on redbuds (caliper, height, shoot growth, shoot dry weight, root dry weight, leaf area, and leaf weight) was significantly reduced by the presence of turf. However, the warm season bermudagrass [Cynodondactylon (L.) Pers.] was less inhibitied than the cool season grasses. The affects of turfgrass on pecan growth was less significant; however, caliper, leaf area, and root dry weight were significantly reduced when grown with turf.

Free access

‘Meyer’ zoysiagrass (Zoysia japonica Steudel) is commonly planted on home lawns and golf courses in the transition zone; however, poor shade tolerance limits its widespread use. This study was conducted to determine changes and differences in growth among selected Zoysia cultivars and progeny under a natural shade environment over a 3-year period in the transition zone. The study was initiated in June 2010 at the Rocky Ford Turfgrass Research Center in Manhattan, KS. Soil type was a Chase silt loam (fine, montmorillonitic, mesic, Aquic, Argiudoll). Zoysia genotypes were sodded in 0.37-m2 plots and arranged in a randomized complete block with five replications under silver maple (Acer saccharinum L.) shade that resulted in a 91% reduction in photosynthetically active radiation (PAR). Genotypes included ‘Zorro’ [Z. matrella (L.) Merrill], ‘Emerald’ [Z. japonica × Z. pacifica (Goudswaard) Hotta & Kuroki], ‘Meyer’, Chinese Common (Z. japonica), and experimental progeny Exp1 (Z. matrella × Z. japonica), and Exp2 and Exp3 [(Z. japonica × Z. pacifica) × Z. japonica]. ‘Zorro’ and ‘Emerald’ experienced winter injury, which negatively affected their performance. Tiller numbers decreased 47% in ‘Meyer’ from June 2010 to June 2012, but declines in [(Z. japonica × Z. pacifica) × Z. japonica] progeny were only 1% for Exp2 and 27% for Exp3, and both Exp2 and Exp3 maintained high percent green cover throughout the study. In general, by the third year of evaluation, progeny of [(Z. japonica × Z. pacifica) × Z. japonica] had higher quality ratings and higher tiller numbers than ‘Meyer’ and may provide more shade-tolerant cultivar choices for transition zone turf managers.

Free access

In the transitional climates, warm-season turfgrasses are more heat and drought resistant and require fewer pesticide and fertilizer inputs than cool-season turfgrasses, but an extended winter dormancy period in warm-season turfgrasses makes them less attractive. Our objective was to evaluate color intensity and persistence of colorants applied at two volumes, once or sequentially, on buffalograss (Buchloe dactyloides) maintained at 2.5 inches and zoysiagrass (Zoysia japonica) maintained at 0.5 inch. Field studies were conducted in Manhattan, KS, and Haysville, KS, from Oct. 2013 to May 2014 on dormant ‘Sharpshooter’ and ‘Cody’ buffalograss and ‘Meyer’ zoysiagrass. The colorants Green Lawnger, Endurant, and Wintergreen Plus were applied at 100 or 160 gal/acre in autumn (single application) or autumn plus midwinter (sequential application). Every 2 weeks, visual turf color was rated on a 1 to 9 scale (9 = best) with ratings based on the intensity of the color, not the color (hue) of green. Few differences in color persistence occurred among colorants, but color persisted longer at the higher spray volume. In general, buffalograss receiving a single autumn colorant application had acceptable color (i.e., a visual rating ≥6) for 55–70 days at 100 gal/acre or 55–88 days at 160 gal/acre. Zoysiagrass receiving a single autumn colorant application had acceptable color for 56–97 days at 100 gal/acre or 97–101 days at 160 gal/acre. Across all sites, a sequential midwinter application applied at 160 gal/acre on buffalograss and both application volumes on zoysiagrass provided acceptable green turf color from that point until spring green-up. Most buffalograss plots receiving the sequential midwinter application at 100 gal/acre had acceptable color from that point until spring green-up. Winter color of buffalograss and zoysiagrass can be enhanced by colorant application, and a longer period of acceptable color can be achieved by applying at a higher volume or by including a sequential midwinter treatment.

Full access

Urbanization is increasing the land area covered with turfgrasses, which may have implications for water quantity and quality. The largest sector of turfgrass is residential lawns. Our objectives were to compare lawn-irrigation perceptions, knowledge, and behaviors of residential homeowners with and without in-ground sprinkler systems (IGS and NIGS, respectively); homeowners were surveyed in three Kansas cities, each with distinctive water quantity and quality issues. Surveys were mailed to 15,500 homeowners in Wichita, 10,000 in Olathe, and 5000 in Salina; the return rate was 11% to 13%. Homeowners with IGS watered more frequently than NIGS; 67% to 90% of IGS and 19% to 31% of NIGS homeowners watered two to three times per week or more. More IGS homeowners watered routinely and applied the same amount of water each time than NIGS homeowners, who mostly watered and adjusted watering amounts based on lawn dryness. More IGS than NIGS homeowners wanted their lawn green all the time, followed lawn-care guidelines, and considered their neighborhood appearance important. Among IGS homeowners, 41% to 54% claimed to know how much water their lawns required compared with only 29% to 33% of NIGS homeowners. However, 65% to 83% in both groups did not know how much water they applied when they irrigated. About 7% to 9% of homeowners swept or blew clippings or lawn-care products into streets or storm drains; this percentage was unaffected by whether they had IGS or not. All homeowners’ lawn irrigation knowledge and habits must be improved to help conserve water and protect water quality, but educational efforts should concentrate on IGS homeowners because they water more frequently.

Full access

Heat stress is problematic to root growth in the production of containerized nursery plants. Container color may moderate effects of solar radiation on substrate temperatures. Studies were conducted near Manhattan, KS, to evaluate effects of container color on growth of roots and shoots in bush beans (Phaseolus vulgaris L.), red maple (Acer rubrum L.), and eastern redbud (Cercis canadensis L.). Four treatments among studies included containers colored flat and gloss white, silver, and black; a green container color treatment was added to the tree studies. Plants were grown in bark-based soil-less substrate and temperatures were measured at 5-cm depths in the south sides and centers. After 4 months, plant variables were measured. Roots were separated into three sections: core, north, and south. In the bean study, substrate temperatures at the south side of the container averaged lowest in flat and gloss white (≈36 °C) and greatest in black containers (50.3 °C). Root density at the south side was reduced in beans by 63% to 71% in black compared with flat and gloss white. In heat-sensitive maples, substrate temperatures at the south side of containers averaged up to 7.7 °C greater in black and green than in other treatments. Substrate temperatures in the center averaged 3.5 to 3.8 °C greater in black than in flat and gloss white, resulting in up to 2.5 times greater root density in flat and gloss white than in black containers. In heat-tolerant redbuds, the effects of container color on whole-plant growth were less evident. Data suggest that heat-sensitive plants benefit from being grown in white containers or painting outer surfaces of green and black containers white.

Free access

Municipalities often restrict irrigation of urban landscapes, causing plants to experience drought stress. Few data are available regarding drought resistance of non-turfgrass landscape species. This study evaluated the performance of one turfgrass (Poa pratensis L. ‘Apollo’) and eight herbaceous landscape species (Achillea millifolium L., Ajuga reptans L. ‘Bronze Beauty’, Liriope muscari Decne., Pachysandra terminalis Siebold and Zucc., Sedum album L., Thymus serpyllum L., Vinca major L., and Vinca minor L.) during a severe drydown and subsequent recovery. This greenhouse study was conducted in the spring/summer and again in the fall of 2010. S. album performed the best, averaging 254 days to decline to a drought rating of 1 (1 to 9 scale, 1 = dead/dormant and 9 = best quality). L. muscari and P. terminalis also performed well, averaging 86 days to a drought rating of 1. V. minor and V. major declined faster than the previous species, averaging 63 days. A. millifolium, A. reptans, P. pratensis, and T. serpyllum declined the fastest to a drought rating of 1 (mean 52 days). Thereafter, the only species to recover after 60 days of resuming irrigation were P. pratensis [46% pot cover (PC)], S. album (38% PC), and V. major (35% PC) in the spring/summer study; no species recovered during the fall study. Results indicate S. album, L. muscari, and P. terminalis are the most drought-resistant among the species evaluated in landscapes where severe drought may occur. V. minor and V. major are good selections in less severe droughts as is P. pratensis if periods of dormancy are acceptable.

Free access

Irrigation methods that can minimize water use are needed, and the performance of recently released ‘KSUZ 0802’ hybrid zoysiagrass (Zoysia matrella × Zoysia japonica) has not been evaluated under such management. Therefore, field experiments were conducted in Manhattan, KS, and Dallas, TX, USA, to compare the amount of water applied and ‘KSUZ 0802’ performance and recovery resulting from irrigation using the following: 1) routine irrigation (1.2 inches/week), 2) evapotranspiration (ET)-based irrigation (60% of reference ET), 3) soil moisture sensor (SMS)-based irrigation, and 4) no irrigation. The experiment was conducted under a rainout shelter in Kansas from 15 Jul to 27 Sep 2019 and 8 Jun to 19 Oct 2020, and in Texas the experiment was conducted under open field conditions from 22 Jun to 9 Sep 2020. The SMS-based irrigation method in Kansas reduced water application by 68% and 52%, respectively, compared with routine or ET-based irrigation. In Texas, the corresponding water savings were 29% and 13%, respectively. The water savings discrepancy was mainly due to differences in local weather conditions and irrigation demand. Visual turf quality of turf receiving SMS-based irrigation remained above the minimally acceptable level throughout the study in Kansas, whereas in Texas, turf quality declined below acceptable level after 2 weeks. In Kansas, turf retained acceptable quality for more than 21 days with no irrigation, and after rewatering, nonirrigated turf recovered back to significant green cover (93% in 2019 and 67% in 2020). ‘KSUZ 0802’ demonstrated good drought tolerance and recovery in Kansas.

Open Access