Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: D. L. Smith x
- Journal of the American Society for Horticultural Science x
Abstract
Roots of sweet potato [Ipomoea batatas (L.) Lam.] and beet (Beta vulgaris L.) peeled with superheated steam, had higher peel and trim yields than did those peeled with saturated steam at the same pressure. Product recovery was greater with all steam-peeling methods than with caustic peeling. Direct injection of cold water into the partially pressurized steam atmosphere of the peeler also increased product recovery. Better color retention in processed beets was obtained from steam-peeled roots than from caustic-peeled roots.
Abstract
Nitrogen and K were applied to 26-year-old ‘Western’ pecan [Carya illinoensis (Wangenh.) C. Koch] trees at 0, 56, 112, or 224 kg ha−1, and 0, 93, or 186 kg ha−1, respectively, for 6 consecutive years (1978–1983). There was a positive relationship between N rate and leaf N concentration and shoot growth. The number of new shoots per 1-year-old shoot was increased by N application. Yield was greater using 56, 112, or 224 kg N ha−1 than no N. Nitrogen rate was negatively related to leaf K concentration and curvilinearly related to leaf Mn concentration, but did not affect leaf Ca or Mg. Leaf P and Zn concentrations were reduced during some years by N application. Potassium application increased leaf K concentration in 1980, 1982, and 1983, but did not affect leaf K concentration in other years. Surface applied K moved to the 30–45 cm depth by 1980 and to the 45–60 cm depth by 1982. Potassium rate was positively related to leaf Mn concentration, but not leaf N, P, Ca, Mg, or Fe concentration. Annual yield was increased by K rate only in 1979, but cumulative yield was positively related to K rate.
A 12-week greenhouse experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal fungi on four apple (Malus domestica Borkh) rootstock cultivars: M.26, Ottawa 3 (Ott.3), P.16, and P.22. The plants were grown in soil from an apple rootstock nursery, containing high levels of extractable P (644 kg Bray/1 ha-1). Inoculation treatments were Glomus aggregatum Shenck and Smith emend. Koske, G. intraradix Shenck and Smith, and two isolates of G. versiforme (Karsten) Berch, one originally from California (CAL) and the other one from Oregon (OR). Mycorrhizal plants were taller, produced more biomass, and had a higher leaf P concentration than the uninoculated control plants. Mycorrhizal inoculation also significantly increased the leaf surface area of `M.26' and `Ott.3' compared to the control. Glomus versiforme(CAL)-inoculated plants generally had the best nutrient balance, the greatest final height and shoot biomass, and produced an extensive hyphal network. All the mycorrhizal plants had similar percentages of root colonization, but the size of the external hyphal network varied with fungal species. Glomus versiforme(OR) had a larger extramatrical phase than G. aggregatum and G. intraradix. Mycorrhizal efficiency was associated with a larger external hyphal network, but showed no relation with internal colonization. Despite the high P fertility of the soil used, growth enhancement due to mycorrhizal inoculation was attributed to improved P nutrition.
Herbicides are increasingly used in orchards. Since apple trees strongly depend on mycorrhizae, the effects of three commonly used herbicides on the host plant and endophyte were examined. Symbiosis between tissue-cultured P16 apple rootstocks and Glomus versiforme (Karsten) Berch was established under greenhouse conditions. Simazine (1, 2, 10, and 20 μg a.i./g), dichlobenil (1, 5, 10, and 25 μg a.i./g), paraquat (0.5, 1, 10, and 100 μg a.i./g), or water was applied to mycorrhizal and nonmycorrhizal plants as a soil drench. The response of mycorrhizal plants to herbicide was greater, and the relative elongation rate was more sharply reduced in mycorrhizal (76%) than in nonmycorrhizal plants (33%). Six weeks after herbicide application, dry mass reduction due to herbicides was similar (39% and 36%) for mycorrhizal and nonmycorrhizal plant shoots, respectively, while root dry mass reduction was larger for mycorrhizal (63%) than nonmycorrhizal plants (46%). None of the herbicide treatments affected root colonization. However, an in vitro hyphal elongation test with G. intraradices Schenck & Smith and herbicide-amended (0, 1, 10, 100, and 1000 μg a.i./g) gellan gum solidified water showed that either dichlobenil or paraquat, even at the lowest concentrations, could significantly reduce hyphal elongation. Simazine did not affect hyphal elongation in vitro, a result suggesting that improved absorption capacity of mycorrhizae explains, at least in part, the increased phytotoxicity of some herbicides. It was found that plant mortality was higher among mycorrhizal than nonmycorrhizal apple trees for all herbicide treatments. The increased CO2 assimilation rates of dichlobenil-treated mycorrhizal plants contrasted with the decreased rates of control plants measured 1 week after dichlobenil treatment. This indicates a physiological interaction between mycorrhizal colonization and dichlobenil in the toxic response of apple plants. Chemical names used: 2-chloro-4,6-bis-ethylamino-s-triazine (simazine), 2,6-dichlorobenzonitrile (dichlobenil), 1,1'-dimethyl-4,4'bipyridinium (paraquat).
Five- to six-year-old `Redblush' grapefruit (Citrus paradisi Macf.) trees on `Volkamer' lemon [VL = C. volkameriana (Ten. & Pasq.)] or sour orange (SO = C. aurantium L.) rootstock, were grown individually in 7.9-m3 lysimeters for 2.5 years using low to high rates of fertilizer N. Net CO2 assimilation (ACO2) of leaves and leaf dry mass per area (DM/a) increased with leaf N concentration, whereas leaf tissue C isotope discrimination (Δ) decreased. Leaf tissue Δ was negatively related to ACO2 and DM/a. Transient effects of rootstock on leaf N were reflected by similar effects on Δ. There was no effect of leaf N on water-use efficiency (WUE) of leaves (WUEL = ACO2/transpiration); WUEL was not correlated with Δ. Although photosynthetic N use efficiency (ACO2/N) consistently decreased with increased leaf N, Δ was not consistently related to ACO2/N. Annual canopy growth, tree evapotranspiration (ET), and fruit yield increased with whole tree N uptake. Leaf tissue Δ was negatively related to all of these tree measurements at the end of the second year. By that time, whole-tree WUE (WUET, annual canopy growth per ET) also was negatively related to Δ. Larger trees on VL had higher ET than trees on SO, but there were no rootstock effects on WUET or on Δ. Leaf tissue Δ was consistently higher than Δ values of trunk and woody root tissues. Citrus leaf tissue Δ can be a useful indicator of leaf N, characteristics of leaf gas exchange, tree growth, yield, and WUET in response to N availability.