Search Results
You are looking at 1 - 7 of 7 items for :
- Author or Editor: Curt Rom x
- HortTechnology x
The American Society for Horticultural Science (ASHS) has since its inception published annual serial monographs or journals to achieve its mission of communicating horticultural science. To recognize the accomplishments of the membership, a series of professional awards was created. After the individual awards, the ASHS created publication awards. This paper, and the papers that follow, document the publication awards of the ASHS. The papers were based on presentations at the 2023 annual conference and serve as additional recognition of the contributions of member authors and as a historical record of achievements of the ASHS.
The American Society for Horticultural Science Education Publication Excellence award was established in 1997 to recognize the most outstanding publication in ASHS journals related to education and teaching. This article reviews the award history, authors, and topics of the awarded papers. The award was recognized annually from 1998 to 2023 except for 3 years when no award was given. The majority of awarded papers were published in HortTechnology. Awards were presented to 70 authors from 23 institutions in 20 states and two other countries. Of the awarded papers, three had single authors, and 20 had multiple authors. Several awarded authors have been recognized in other ASHS publication awards or professional career awards. The majority of awarded papers focused on undergraduate students, teaching methods, and floriculture or ornamental topics.
Numerous apple (Malus ×domestica) research experiments have shown that organic apples can be both profitable and sustainable, especially in the Pacific northwestern United States. However, there is limited published research on the profitability of organic apple orchards in the southern U.S. region. Surveys of southern U.S. stakeholders have indicated that great opportunities exist for markets of both fresh and processed fruit, but significant challenges still exist. These challenges include a lack of information available on the economic impacts of different organic production practices and the potential returns available from organic production. In response to these challenges, we developed a user-friendly interactive economic decision support tool using spreadsheet software to simulate organic apple production in Arkansas and across the southern United States. The purpose of this interactive economic decision support tool is 2-fold: 1) to assist producers in the evaluation of costs, returns, and risks associated with their organic apple orchard and 2) to assess changes to cost, return, and risk as expected costs, prices, and/or yields change. The production budget components of the interactive economic decision support tool estimate variable and fixed costs, gross revenues, and net returns for 18 years of production. In addition, this interactive economic decision support tool provides economic analyses regarding: 1) the operation’s breakeven (price and yield) points, 2) sensitivity analyses or “what if” scenarios related to changes in costs and returns, and 3) risk assessment by calculating the probability of obtaining a positive net present value (NPV) over the life of the organic apple orchard. This manuscript describes the development of this interactive economic decision support tool and provides an example of how it works.
Extending the production season of blackberry (Rubus subgenus Rubus) cultivars allows producers the opportunity to potentially receive better prices. Producers could benefit from out-of-season production by sustaining cash flow during more of the year and thereby expanding their market. The objective of this study was to compare the present value (PV) probabilities of being able to cover the total cost (TC) of production (break-even) for open-field and high tunnel production systems for the primocane-fruiting blackberry cultivar Prime-Jan® in northwestern Arkansas. (PVs) of gross revenues (GRs) of each production system were simulated 500 times. Total yields were higher in the open-field system in the first 2 years of production and consistently higher in weeks 33 to 34 and 36 to 37 than high tunnel production. It seems that there are no yield benefits from the high tunnel system early in the harvest season, except in the first year of primocane-fruiting production. The break-even probability was sensitive to the different percentage of yield sold, the percentage of the retail price received by the producer, and the production system analyzed. Even though the potential gross returns obtained with the high tunnel system are high (when compared with open-field production), the PV distributions of the gross returns do not offset the high tunnel TC in half of the simulations. Conversely, open-field production proves to be more profitable both in magnitude and in terms of the likelihood of exceeding the break-even threshold over the productive life of the enterprise.
Insecticides were compared for control of codling moth (Cydia pomonella) and oriental fruit moth (Grapholita molesta), and effects on european red mites (Panonychus ulmi) and predatory mites (Neoseiulus fallacis) in `Red Delicious' apple trees (Malus ×domestica). Ten days after treatment with azinphosmethyl, celerylooper (Anagrapha falcifera) nuclear polyhedrosis virus, rotenone-pyrethrin, or codling moth granulosis virus, fruit damage by larval codling moth and oriental fruit moth was significantly less than trees treated with Bacillus thuringiensis var. kurstaki or water (control). Trees treated with azinphosmethyl or celery looper nuclear polyhedrosis virus had fewer damaged fruit where larvae exited than did other treatments. By 21 days after the last treatment, all treatments had significantly more wormy or damaged fruit than did azinphosmethyl. At 10 days after treatment, the two viruses were more deleterious to codling moth than to oriental fruit moth causing a <1:3 ratio of these larvae compared to >3:1 ratio for the other treatments. On 16 June, 100 predatory mites were released onto the trunk of each tree. The minimum ratio of predatory mites to european red mites (>1:10) that favors biological control of european red mites occurred in all treatments by 14 July, except those treated with azinphosmethyl or rotenone-pyrethrin that had significantly more cumulative mite days of european red mites than the other treatments. The use of azinphosmethyl delayed biological control of the european red mites until 27 July whereas rotenone-pyrethrin treatment never attained biological control of the mites.
The broad mite (Polyphagotarsonemus latus) was found in association with leaf-curling symptoms on primocane-fruiting blackberry (Rubus rubus) in Arkansas in 2007–2009. Broad mite had not been previously reported on blackberry. The plots sampled in this study were part of a study comparing harvesting in the fall versus harvest in spring and fall, high tunnels versus ambient conditions, and three genotypes, all under organic production. Leaves were sampled, broad mites per leaf counted, and leaf area and trichome density measured. Results indicated that broad mite is capable of overwintering in a moderate temperate climate and that it reduces leaf area of primocane-fruiting blackberry. The fall-only harvest system had fewer broad mites than fall and spring harvest. There were a range of genotype effects on broad mite populations, including one genotype, ‘Prime-Jan®’, on which broad mite populations remained low, and one genotype, APF-46, on which mite populations grew significantly. Observations indicate that the broad mite may be a pest of ‘Prime-Ark® 45’, another primocane-fruiting cultivar.
Strawberry (Fragaria ×ananassa) production practices followed by growers in the United States vary by region. Understanding the challenges, needs, and opportunities in each region is essential to guide research, policy, and marketing strategies for the strawberry industry across the country, and to enable the development of general and region-specific educational and production tools. This review divided the United States into eight distinct geographic regions and an indoor controlled or protected environment production system. Current production systems, markets, cultivars, trends, and future directions for each region are discussed. A common trend across all regions is the increasing use of protected culture strawberry production with both day-neutral and short-day cultivars for season extension to meet consumer demand for year-round availability. All regions experience challenges with pests and obtaining adequate harvest labor. Increasing consumer demand for berries, climate change-induced weather variability, high pesticide use, labor and immigration policies, and land availability impact regional production, thus facilitating the adoption of new technologies such as robotics and network communications to assist with strawberry harvesting in open-field production and production under controlled-environment agriculture and protected culture.