Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Cindy L. Flinn x
  • HortScience x
Clear All Modify Search

Thermal analysis of Forsythia × intermedia `Spectabilis' flower buds had previously detected the occurrence of low temperature exotherms (LTE) during freezing. The LTE apparently resulted from the freezing of supercooled water and corresponded to the death of the florets. The genus Forsythia encompasses a wide array of species and interspecific crosses ranging in flower bud hardiness and floret size. The ability of buds to supercool, the relationship between the LTE and flower bud hardiness, and the extent to which floret size affects both were studied in flower buds of the following Forsythia species: F. × intermedia `Spectabilis', F. × intermedia `Lynwood', F. `Meadowlark', F. suspensa var. fortunei, F. `Arnold Dwarf, F. europaea, F. giraldiana, F. × intermedia `Arnold Giant', F. japonica var. saxatilis, F. mandshurica, F. ovata, and F. viridissima. Flower buds used for thermal analysis were also used in subsequent size determinations. Hardiness evaluations were conducted using controlled freezing tests, and the sampling interval defined using the temperature range of the LTEs. Initial evaluation indicated a high degree of correlation (α>.50) between mean LTEs and mean killing temperatures. The Forsythia genus, with its broad range of bud hardiness and size provides an excellent system in which to study the mechanisms of supercooling. Thermal analysis of cultivars which exhibit LTEs can accurately assess bud hardiness with minimal plant material.

Free access

Examination of both frozen specimens and -5C freeze-fixed buds showed that ice crystals were not uniformly distributed in blueberry flower buds. Localized freezing was also evidenced by detection of multiple freezing events using differential thermal analysis (DTA). Upon cooling, an initial exotherm occurred just below 0C and coincided with ice formation in adjacent woody tissue. Multiple low temperature exotherms (LTE), which have been reported to correspond with the freezing of individual blueberry florets (Bierman, et al. 1979. ASHS, 104(4):444-449), occurred between -7C and -28C. The presence and temperature of LTEs was influenced by cooling rates and whether buds were excised. LTE temperatures did not correlate with hardiness of buds frozen under field-like conditions. Results suggested that DTA of excised buds was not an appropriate method for determining hardiness.

Free access