Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Chad T. Miller x
  • HortScience x
Clear All Modify Search

Oxalis regnellii, the shamrock plant, and O. triangularis are niche ornamental greenhouse crops produced and marketed primarily for their foliage; thus, it is imperative to produce the fullest, most colorful, and blemish-free plants as possible. An experiment was conducted using O. regnellii, comparing two irrigation methods, overhead (drip) irrigation versus subirrigation, in addition to varying 20N–2.2P–16.6K fertilizer concentrations, 50, 100, 200, 300, and 500 mg·L−1 nitrogen (N). Overhead irrigation produced larger plants with increased root mass as compared with subirrigation. Low or high fertilizer concentration (50 mg·L−1 N and 500 mg·L−1 N, respectively) led to reductions in the fresh and dry weight of overhead-irrigated plants compared with intermediate fertilizer rates. At the highest fertilizer treatment, plant height was decreased. Chlorophyll index (based on SPAD readings) increased linearly and quadratically for subirrigated and overhead-irrigated plants, respectively. A second study analyzed the effects of seven different fertilizer formulations on growth of O. regnellii and O. triangularis. The fertilizers used in this study were Jack's LX All Purpose (21N–2.2P–16.6K), Peter's Professional (20N–8.8P–16.6K), Jacks Poinsettia FeED Ca-Mg (15N–1.7P–12.5K), Jack's Petunia FeED Mg (20N–1.3P–15.7K), Peter's Professional Peat-Lite Dark Weather Feed (15N–0P–12.5K), Peter's Excel Cal-Mag (15N–2.2P–12.5K), and the slow-release fertilizer Osmocote® (14N–4.2P–11.6K). Growth of both species was significantly reduced by fertilizers that contained little or no phosphorus (P). Current water-soluble fertilizer recommendations of 21N–2.2P–16.6K or slow-release granule fertilizer of 14N–4.2P–11.6K (Osmocote®) produced acceptable, marketable plants, whereas the best O. regnellii and O. triangularis plants were produced using 15N–2.2P–12.5K and 20N–1.3P–15.7K formulations, likely as a result of the additional calcium (Ca), magnesium (Mg), and iron (Fe) in the mixtures.

Free access

Intumescences are a physiological disorder characterized by hypertrophy and possibly hyperplasia of plant tissue cells. Ultimately, this disorder results in the death of the affected cells. Previous observations and research suggest that the quality and quantity of light to which plants are exposed may be a factor in development of the disorder. The purpose of this study was to assess the preventive effect of ultraviolet-B (UVB) radiation on intumescence development in ornamental sweetpotato (Ipomoea batatas). Two sweetpotato cultivars, Sidekick Black and Ace of Spades, were grown under light treatments consisting of 1) normal greenhouse production conditions; 2) supplemental UVB lighting; 3) supplemental UVB lighting with Mylar® sleeves over the lamps to block UVB radiation; and 4) control lighting with full spectrum lamps. Treatments were administered for 2 weeks, and the experiment was repeated twice. ‘Ace of Spades’ was highly susceptible to intumescence development, whereas ‘Sidekick Black’ was much less susceptible to the disorder. For ‘Ace of Spades’, the addition of UVB radiation significantly reduced the number of leaves affected with intumescences when compared with plants grown under the other light treatments; this UVB effect was not apparent for ‘Sidekick Black’. Furthermore, there was no evidence for reduced plant growth under UVB light in either cultivar, but side effects from the radiation included leaf discoloration and deformities. This study indicates a cultivar-specific effect of UVB light in preventing intumescence development on ornamental sweetpotato, therefore suggesting a potential genetic component in intumescence susceptibility. These results provide further insight in better understanding intumescence development and how to prevent the disorder.

Free access