Search Results
You are looking at 1 - 10 of 26 items for :
- Author or Editor: Carol Miles x
- HortTechnology x
Sales of organic foods are one of the fastest growing segments of Washington state's food industry. In response to grower demand for information on organic and sustainable production practices, Washington State University (WSU) created an Extension Agricultural Systems position. This position has been instrumental in helping WSU gain the trust and recognition of organic growers. The position enabled WSU to demonstrate that it has a commitment to organic and sustainable research and extension activities. This paper describes the key activities of this position: 1) finding out research needs, 2) on-farm research approaches, 3) formation of regional research programs, and 4) creation of the WSU Food and Farm Connections Team. Grant funded on-farm research, interdisciplinary teams, and extension publications have been major emphases of the position.
Successful grafting of vegetables requires high relative humidity (RH) and optimal temperatures for ≈1 week following grafting to reduce transpiration of the scion until rootstock and scion vascular tissue are healed together and water transport is restored. This study evaluated the effect of three healing chamber designs on the survival of grafted eggplant (Solanum melongena), tomato (Solanum lycopersicum), and watermelon (Citrullus lanatus). The three healing chamber designs were 1) an industry design, which was hand-misted, 2) a research design, which contained a humidifier, and 3) a simplified design, which was shadecloth only and hand-misted. All plants were self-grafted using the splice grafting technique, placed in the healing chamber for 7 days after grafting and evaluated for signs of wilting and graft failure from day 6 to day 14 after grafting. During the 7-day healing period, the industry design had the greatest fluctuation in temperature, the research design had the greatest fluctuation in RH, and the shadecloth only design had the least fluctuation in both temperature and RH. When the healing chambers were closed on day 2 after grafting, the industry healing chamber had higher mean temperature and RH (24.9 °C, 98%) than both the research (23.4 °C, 81%) and shadecloth only (23.3 °C, 52%) healing chambers. These results suggest that a humidifier may not be necessary to maintain high RH. Mean graft survival rates in the industry (69%) and research (66%) healing chambers were similar, and both were higher than that in the shadecloth only healing chamber (52%). Tomato had the highest rate (98%), eggplant was intermediate (82%), and watermelon had the lowest mean survival rate (7%); there was no interaction between healing chamber and crop. The very low survival rate of watermelon was most likely due to the grafting technique used in this study, which is not optimal for watermelon. Tomato graft survival was high in all three healing chambers (96% to 98%), suggesting that high RH is not essential for tomato graft survival. Eggplant graft survival decreased from 90% to 60% when RH was decreased, suggesting that high RH is essential for eggplant graft survival.
Lettuce (Lactuca sativa) and tomato (Solanum lycopersicum) are popular fresh market vegetable crops. In western Washington, there is interest in growing them in high tunnel production systems because of the region’s mild, coastal climate. The objectives of this study were to contrast the economic potential of growing lettuce and tomato under high tunnel and open-field production systems, and identify the main factors affecting profitability within each production system. Economic data for this study were collected by interviewing experienced lettuce and tomato growers in western Washington during focus group sessions. Costs of production varied by crop and production system, and findings indicated that it was five times more costly to grow lettuce and eight times more costly to grow tomato in a high tunnel than in the open field in western Washington. For lettuce, the labor cost per square foot of growing area was found to be 6 times greater in a high tunnel than in the open field; and for tomato, labor costs were 10 times greater in a high tunnel than in the open field. Total labor cost comprised more than 50% of the total production costs of lettuce and tomato in both the high tunnel and open-field systems. The percentage of total labor cost was similar in both the high tunnel and open-field production for lettuce, but was higher in high tunnel tomato production than in the open field. Tunnel-grown lettuce and tomato had three and four times greater marketable yield compared with field-grown, respectively. Given the base crop yield and average price, it was 43% more profitable to grow lettuce in the open field than in the high tunnel, while in contrast, high tunnel-grown tomato was three times more profitable than open-field tomato production.
In this 2-year study of ‘Brown Snout’ specialty cider apple (Malus ×domestica) grafted onto Malling 27 (M.27) and East Malling/Long Ashton 9, we compared weight of total harvested fruit, labor hours for harvest, tree and fruit damage, and fruit and juice quality characteristics for machine and hand harvest. Machine harvest was with an over-the-row small fruit harvester. There were no significant differences due to rootstock; however, there were differences between years for most measurements. Weight of harvested fruit did not differ because of harvest method; however, harvest efficiency was 68% to 72% for machine pick and 85% to 89% for machine pick + clean-up weight (fruit left on trees and fruit knocked to the ground during harvest) as compared with hand harvest. On average for the 2 years, hand harvest required 23 labor-hours per acre at a total cost of $417, while machine harvest required 5 labor-hours per acre at a cost of $93. There were no differences due to harvest method on damage to spurs (four to eight spurs damaged per tree) or limbs (0.5–0.8 limbs damaged per tree). Although there were also no differences due to harvest method on fruit bruising (100% for both harvest methods in this study), 10% of fruit were sliced and 4% of fruit were cut in half inadvertently with machine harvest, and none were sliced or cut with hand harvest. Harvest method had no effect on fruit quality characteristics, specifically, soluble solids concentration (SSC), pH, specific gravity, titratable acidity (malic acid equivalents), or percent total tannin, when fruit was pressed immediately after harvest or stored for 2, 3, or 4 weeks before pressing. Juice quality characteristics were affected by storage, and SSC increased 11% in 2011 (3 weeks storage), and 12% and 18% in 2012 (2 and 4 weeks storage, respectively). Similarly, specific gravity increased both years after storage, 1% in 2011, and 1% and 2% in 2012 (a 1% increase in juice specific gravity corresponds to a potential 1.3% increase in alcohol by volume after fermentation for cider). Both years, juice pH tended to decline when fruit was stored (0.01 pH units in 2011, 0.06–0.12 pH units in 2012). Overall, cider apple harvest with an over-the-row small fruit machine harvester used four times less labor than hand harvest, yield reached 87% that of hand harvest (when clean-up yield was included), and juice quality characteristics were not negatively affected. These results suggest that machine harvest may be suitable for cider apples if equipment is available and affordable.
Asian crops can provide growers with a means to diversify crop production and marketing options. However, before expanding into Asian crops, growers should determine consumer expectations regarding a new crop. Existing market criteria for each crop (i.e., maturity, color, size, shape) must be considered for all markets including traditional Asian use as well as for the general North American market. If growers decide to target general consumers in North America, then consumer awareness and acceptance must be addressed in a marketing and promotion program. Extension publications, popular magazines, and newspapers are useful tools in a marketing and promotion program. Crop production information must be available to enable growers to successfully produce Asian crops. Yet, most growers are unlikely to invest heavily in new production equipment and systems until a market has been established for the crop. It is a challenge for university scientists and extension agents to concurrently create supply and demand for new Asian crops. To accomplish this, multidisciplinary teams that include university and community experts should initiate a diversified program of Asian crop production, promotion, and marketing.
The one-cotyledon splice grafting method is commonly used for watermelon (Citrullus lanatus) because it is relatively rapid and there is less rootstock regrowth than with other grafting methods. However, plants must rely on moisture in the air for survival during at least the first 4 days after grafting. In 2015 and 2016, greenhouse experiments were conducted to investigate if application of commercial stomata-coating and stomata-closing antitranspirant products, applied 1 day before grafting to both scion and rootstock seedlings, could increase the survival of watermelon transplants grafted using the one-cotyledon method. ‘TriX Palomar’ watermelon was grafted onto rootstock ‘Tetsukabuto’ (Cucurbita maxima × C. moschata) in Expt. 1, and onto rootstock ‘Emphasis’ (Lagenaria siceraria) in Expt. 2. The survival of grafted watermelon differed because of experiment (P = 0.0003), antitranspirant treatment (P < 0.0001), and experimental repeat (P < 0.0001). The survival of ‘TriX Palomar’ grafted onto ‘Tetsukabuto’ was greatest for plants treated with the stomata-coating + stomata-closing antitranspirants (92% to 100%), followed by the stomata-closing antitranspirant (79% to 97%), water (72%), and the stomata-coating antitranspirant (50% to 60%). For ‘TriX Palomar’ grafted onto ‘Emphasis’, plants treated with the stomata-closing antitranspirant had the greatest survival (87% to 97%), followed by stomata-coating + stomata-closing antitranspirants (84% to 94%), the stomata-coating antitranspirant (50% to 67%), and water (53% to 68%). In Expt. 3, stomatal conductance (g S) was similar for both ‘TriX Palomar’ and ‘Emphasis’ seedlings before treatment application, but differed because of the treatments 1 and 2 days after application. Stomatal conductance did not change for ‘TriX Palomar’ seedlings after application of the stomata-coating antitranspirant or water, or for ‘Emphasis’ seedlings after application of the stomata-coating antitranspirant. Stomatal conductance of ‘TriX Palomar’ seedlings decreased 57% to 62% after application of the stomata-closing antitranspirant and decreased 48% to 60% after application of the stomata-coating + stomata-closing antitranspirants. Stomatal conductance for ‘Emphasis’ seedlings increased 37% after water application, and decreased 58% to 68% after application of the stomata-closing antitranspirant, and decreased 42% to 45% after application of the stomata-coating + stomata-closing antitranspirants. The survival rate of grafted ‘TriX Palomar’ transplants was increased nearly 30% by application 1 day before grafting of the commercial stomata-closing antitranspirant or stomata-coating + stomata-closing antitranspirants in this study. Increase in grafting success is likely due to a reduction in transpiration that occurs when the stomata-closing antitranspirant is applied to the seedlings before grafting.
Sweetpotato (Ipomoea batatas) production in the northern United States is limited due to the perceived barriers of a short growing season and relatively cool summer temperatures, yet recent studies have shown yield in northern regions can be greater than the national average when sweetpotatoes are grown with plastic mulch. A study was conducted in northwest Washington to evaluate the productivity of ‘Covington’ sweetpotato with polyethylene (PE) and soil-biodegradable (BDM) mulches and different in-row spacings (20, 30, and 38 cm) in 2019, and to test accessions resistant to wireworm (Agriotes sp. and Limonius sp.) in 2020. In 2019, slips were shipped from North Carolina, and after 4 days in transit, 60% to 70% died after transplanting in the field. By the end of the season, BDM deterioration reached 11% compared with 0.4% for PE mulch, but there were no differences due to mulch in plant establishment, growth, yield, or the proportion of storage roots damaged by wireworm. Total storage root yield was 22 t⋅ha−1 with PE mulch and 15 t⋅ha−1 with BDM. Percent canopy cover was greatest at 20-cm spacing later in the growing season, likely due to intermingling of vines from adjacent plants, whereas high percent canopy cover at 38-cm spacing was likely due to increased production of secondary vines per plant. Total yield was greatest with 20-cm plant spacing (20.4 t⋅ha−1), intermediate with 30-cm spacing (18.0 t⋅ha−1), and lowest with 38-cm spacing (17.0 t⋅ha−1). In contrast, the greatest number of storage roots per plant was produced with 38-cm plant spacing (3.4). There were more jumbo sweetpotatoes produced with PE mulch (3.4 t⋅ha−1) and with 30-cm spacing (3 t⋅ha−1), and the weight of U.S. No. 2 grade sweetpotatoes was greatest at 20-cm spacing (10.2 t⋅ha−1). Soil temperature was increased by 3 °C under the PE mulch and 2 °C under the BDM compared with bare ground. However, 98% of storage roots were observed to be severely damaged by wireworm in 2019, with more than 10 to 20 holes per storage root. For wireworm-resistant accessions in 2020, 16% of the storage roots were damaged by wireworm, with 1.7 to 4.0 holes per storage root. Total yield of accessions PI 666141 and 04-791 (45.5 t⋅ha−1 on average) was greater than the national average (24.7 t⋅ha−1). Overall, sweetpotatoes appear to be suitable for production in northwest Washington, but low yield in 2019 highlights the importance of healthy slips for successful production. Future research should evaluate cultivars with maximum adaptation to the region, techniques to reduce wireworm damage including genetic resistance, and the economics of producing sweetpotatoes in northern regions.
Three potentially biodegradable plastic mulch products, Mater-bi®-based black film (BioAgri), experimental polyhydroxyalkanoate film (Crown 1), and experimental spunbonded polylactic acid fabric (SB-PLA-11), were evaluated over two broccoli (Brassica oleracea var. italica) growing seasons to determine deterioration before and after soil incorporation. Pretillage mulch deterioration was evaluated in both growing seasons by rating the percent visual deterioration (PVD). Crown 1 had the greatest PVD throughout the study (P ≤ 0.05) and BioAgri also had significant pretillage deterioration. SB-PLA-11 showed no appreciable deterioration based on PVD (<1.3%) in either growing season. Postincorporation mulch deterioration was measured for 13 months after rototilling at the end of the first growing season. The average fragment area of all mulch products decreased over time after soil incorporation. The number of postincorporation mulch fragments initially increased for all mulch products, with Crown 1 and BioAgri reaching maximum fragment counts 132 and 299 days after incorporation, respectively. As the number of fragments declined, the average area of fragments did not change, suggesting that a threshold fragment size may exist at which biodegradation accelerates. At the end of the study period, 397 days after soil incorporation, Crown 1 and BioAgri had deteriorated 100% and 65%, respectively; whereas SB-PLA-11 showed very little deterioration.
In this 2-year study, ‘Brown Snout’ specialty cider apples (Malus ×domestica) that had been hand harvested or machine harvested with an over-the-row shake-and-catch small fruit harvester were ambient stored (56 °F mean temperature) for 0, 2, and 4 weeks to evaluate yield, fruit damage, yield loss, and juice quality characteristics. The average yield (pounds per acre) of fruit picked and retained by the mechanical harvester was 74% that of the hand-harvest yield and 81% that of the hand-harvest yield when fruit that fell out of the harvester was included in the machine-harvest yield. Percent fruit bruised and cut were greater for machine harvest (97.5% and 25.5%, respectively) than for hand harvest (47% and 0.5%, respectively), on average for 2014 and 2015. Yield loss to rot was greater for machine harvest than for hand harvest, and increased for both methods over time; percent rot doubled from 2 to 4 weeks storage for machine harvest (22% to 41%), and while negligible, tripled from 2 to 4 weeks storage for hand harvest (0.7% to 2.1%). Juice quality characteristics did not differ due to harvest method, but did differ due to year and storage time. Soluble solids concentration [SSC (%)] and specific gravity (SG) did not change due to storage in 2014, but in 2015, SSC and SG were greater on average for 2 and 4 weeks storage duration (15% and 1.062, respectively) than at harvest (13.31% and 1.056, respectively). Titratable acidity (grams per liter malic acid) decreased in 2014 from 2.98 g·L−1 at harvest to 2.70 g·L−1 on average for 2 and 4 weeks storage duration, but did not differ due to storage in 2015. Tannin [tannic acid equivalent (%)] was unchanged in 2014 from harvest to 4 weeks storage, but increased in 2015 from 0.16% at harvest to 0.19% by 4 weeks storage. These results indicate that harvest efficiency could be improved with some engineering modifications of the over-the-row mechanical harvester and training modifications for the trees. A comparison of the aromatic and phenolic contents of mechanically harvested and hand-harvested ‘Brown Snout’ would be a valuable next step in evaluating shake-and-catch mechanical harvest technology for cider apple production.
Little information exists on the bloom and fruit characteristics of cider apple (Malus ×domestica) cultivars grown in the United States for the juice and alcoholic beverage markets. In this study, a total of 17 cider apple cultivars, including 4 American, 9 English, and 4 French, plus 1 Danish standard dessert apple cultivar (Red Gravenstein, Worthen strain) commonly used for cider, all grown in northwest Washington, were evaluated from 2000 to 2015 for commercially relevant traits. Trees were rated each year and the cultivars were categorized accordingly by relative bloom time, bloom habit, and productivity. The mean full bloom (FB) date of the 18 apple cultivars evaluated ranged from 25 Apr. to 25 May, with 6 cultivars categorized as early season bloomers, 9 as midseason, and 3 as late season. The mean bloom density (BD) rating (measured on a scale of 1–5) for all cultivars was (mean ± sd) 3.8 ± 0.6 (moderate bloom), with the bloom habit of 1 cultivar categorized as biennial, 11 as consistent, and 6 as strongly consistent. The mean productivity rating (measured on a scale of 1–5) for all cultivars was 2.9 ± 0.6 (light fruiting), with the productivity of 4 cultivars categorized as biennial, 10 as consistent, and 4 as strongly consistent. The mean fruit diameter of the 18 apple cultivars was 2.7 ± 0.4 inches (medium sized), with the fruit size of 2 cultivars categorized as small-fruited, 15 as medium-fruited, and 1 as large-fruited. For the 18 cultivars, the mean tannin and titratable acidity (TA) were 0.20% ± 0.14% and 0.54% ± 0.28%, respectively, and using the English cider apple classification system of juice type, 4 of the cultivars were classified as bittersweet, 1 as bittersharp, 3 as sweet, and 10 as sharp. Three of the cultivars had tannin content lower than what was historically recorded at the Long Ashton Research Station (LARS) in Bristol, England, for those same cultivars. The mean specific gravity (SG) of the 18 cultivars was 1.052 ± 0.007, the average predicted alcohol by volume (ABV) was 6.9% ± 0.9%, and the mean pH was 3.68 ± 0.39. Classification of three cultivars in northwest Washington, based on juice characteristics, differed from their historical classification in England, likely because of differences in climate and management. Only cultivars Golden Russet (sharp), Grimes Golden (sharp), and Yarlington Mill (sweet, but borderline bittersweet) were strongly consistent in productivity, but none produced high levels of tannin, whereas only cultivars Bramtot (bittersweet), Chisel Jersey (bittersweet), and Breakwell Seedling (bittersharp) were consistent in productivity and produced high levels of tannin.