Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Carlos A. Parera x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

In a test to overcome poor seed germination and seedling vigor of sweet corn (Zea mays L.) seeds carrying the shrunken-2 (sh2) mutant endosperm, primed seeds of two sh2 sweet corn cultivars—Crisp N'Sweet 711 (CNS-711) and How Sweet It Is (HSII)—were redried at 15, 20, 30, or 40C and 25% relative humidity after solid matrix priming (SMP). The dehydration rate was significantly lower in `CNS-711' than `HSII' at all temperatures. In both cultivars, the drying temperature after SMP was critical for seed performance. Primed seeds with a higher dehydration rate (dried at 30 or 40C) had better seed vigor, greater field emergence and seedling vigor, lower leachate conductivity and imbibition rate, and a higher respiration rate and glutamic acid decarboxylase activity than primed seeds redried at the lower temperatures or control seeds. Increased incidence of pathogen growth was observed on seeds dried at 15 and 20C relative to those dried at 30 or 40C, probably as a consequence of greater leakage from the seeds at a lower redrying temperatures. Lack of tolerance to dehydration at 15 and 20C was another factor adversely affecting the seeds redried at low temperature. A more rapid dehydration rate at a higher temperature after priming sh2 sweet corn improved many of the physiological characteristics used to measure seed quality and the subsequent emergence and vigor of the seedlings under field conditions.

Free access

Presowing seed treatments were devised to improve emergence and crop uniformity of two sweet corn (Zea mays L.) cultivars [`Crisp N' Sweet 711' (CNS-711) and `How Sweet It Is' (HSII)] that carry shrunken-2 (sh2) mutant endosperm. The treatments included a fungicide combination, sodium hypochlorite (SH), solid matrix priming (SMP), and SMP combined with SH during treatment (SMPSH). Seed germination was tested in a laboratory cold test. Emergence percentage, emergence rate index (ERI), and seedling dry weight were calculated from field trials. CNS-711, in the cold test and field trials, had a higher germination rate, ERI, final emergence, and seedling dry weight than HSII. In both cultivars, SMPSH significantly improved germination in the cold test and final emergence and ERI in the field trials for HSII compared to nontreated seeds. There was no significant difference between the fungicide and SMPSH treatments regardless of cultivar. These results suggest that the combination of SMP and disinfection with SH can be an alternative seed treatment to fungicides to improve uniformity and stand establishment in sh2 sweet corns.

Free access

Generally, sweet corn cultivars (Zea mays L.) carrying the shrunken-2 (sh2) gene have lower germination and seedling vigor than normal or sugary (su) cultivars. Seeds of sh2 `How Sweet It Is' (HSII) and `Crisp N'Sweet 711' (CNS-711) were imbibed for 6 hours. Rapid water uptake, higher seed leakage, and fungal infection were found in HSII, the lower germinating cultivar. Imbibition rate and leakage conductivity were reduced in both cultivars during the first 5 hours at 5C as compared with 25C. Sodium hypochlorite was an effective seed disinfectant. When the seeds were primed with sodium hypochlorite via solid matrix priming (SMP), germination under stressful conditions (soilcold test) was significantly improved in both cultivars. Primed seeds had significantly lower imbibitional rates and leakage conductivity than nonprimed seeds. The superior germination measured in primed and disinfected seeds was possibly due to the lower imbibitional rate and reduced seed fungal infection.

Free access

The shrunken-2 (sh2) mutant of maize (Zea mays L.) increases sucrose and reduces starch in developing endosperm. An associated trait is poor seed and seedling vigor in seeds containing the mutation. The specific effects of sh2 mutant endosperm on embryo and seedling vigor were determined by analyzing seeds that contained either concordant wild-type or nonconcordant combinations of mutant and wild-type embryo and endosperm genotypes. The nonconcordant seed types that contained a wild-type embryo in association with a sh2 mutant endosperm or a sh2 mutant embryo in association with a wild-type endosperm were generated using the TB-3La translocation chromosome in which a wild-type Sh2 gene is attached to the centromeric portion of a B chromosome. Under stress conditions (complex stress vigor test), the seeds with mutant endosperm had lower germination, seedling fresh and dry weight, and index of conductivity than seeds with wild-type endosperm. Mutant endosperm and embryos excised from mutant endosperm imbibed more water than wild-type endosperm or embryos excised from wild-type endosperm. Because of the high concentration of osmotic solutes in the mutant endosperm, a rapid water uptake may induce a membrane disorganization. Leachate conductivities of seeds with mutant endosperm were higher than seeds with wild-type endosperm. In addition, a higher sucrose content and a lower raffinose to sucrose ratio were measured in the wild-type embryos associated with mutant endosperms than in the normal embryos excised from concordant wild-type seeds. These results suggest that a high rate of water uptake caused by the elevated concentration of osmotic solutes in seeds with mutant endosperms may affect membrane integrity during imbibition. Alternatively, the lower raffinose to sucrose ratio present in the mutant endosperm class might affect stabilization of cell membranes during seed desiccation. Embryos cultured in media containing 10% starch or no carbohydrate produced smaller seedlings than embryos cultured in 5% or 10% sucrose. Wild-type embryos excised from mutant endosperms exhibited lower germination in 0% and 5% sucrose media than embryos from concordant seed, indicating that reduced water uptake rates associated with lower external osmotic potential (10% sucrose) can improve vigor of embryos associated with sh2 mutant endosperm. The reduced vigor of embryos and seedlings that develop in association with sh2 mutant endosperm can be traced to the physiological and biochemical effects of the elevated sucrose levels present during seed formation and imbibition.

Free access

Poor emergence and seedling vigor are common characteristics of many sweet corn (Zea mays L.) cultivars with the shrunken-2 (sh2) mutant endosperm. A rapid and reliable predictor of sweet corn seed field emergence would improve the potential for high quality crops. Field emergence of seven sh2 sweet corn cultivars grown at seven environments in Florida were correlated with laboratory vigor tests. Factor analysis was used to separate noncollinear vigor tests for subsequent multiple regression models. The best single predictor test (R 2 = 0.93***) was an index based on leachate conductivity and germination percentage after a complex stress vigor test involving incubation at 15C. Leachate conductivity after 3 h soaking at 25 or 30C (R 2 = 0.9W***), soil cold test (R 2 = 0.9***), alternate temperature stress conductivity test (R 2 = 0.88***), standard germination test at 30C (R 2 = 0.88***), and an index involving incubation at 25C (R 2 = 0.88***) were also good predictors of field emergence. Noncollinear tests including the towel germination test at 25 C and an alternate temperature stress conductivity test resulted in the best two factor predictor (r 2 = 0.89***), and with glutamic acid decarboxylase activity (GADA) was the best three factor predictor (r 2 = 0.93***). The index of conductivity and complex vigor test (ICS) evaluated seed membrane integrity and potential for pathogen infection, respectively, and can be considered as major factors affecting emergence in sh2 sweet corn.

Free access