Search Results

You are looking at 1 - 10 of 17 items for :

  • Author or Editor: Carl J. Rosen x
  • HortScience x
Clear All Modify Search
Author:

Two separate field experiments were conducted to determine the influence of Ca sprays and N fertilizer rate on leaf tipburn incidence in `Snow Crown', `Self Blanche', and `Imperial 10-6' cauliflower. Incidence of leaf tipburn was highest in `Snow Crown' each year and varied with year in `Self Blanche' and `Imperial 10-6'. Delaying planting of `Snow Crown' by 3 weeks decreased tipburn incidence by 20% and decreased the number of tipburned leaves per tipburned plant by 60%. Sprays of CaCl2 or calcium chelate had no effect on cauliflower productivity, nutrition, or tipburn incidence. Increasing N fertilizer rate from 67 kg N/ha to 201 kg N/ha linearly increased yield without significantly affecting tipburn incidence. Concentrations of Ca in tips of nontipburned leaves were two to five times greater than those in tips of tipburned leaves of comparable physiological age. Basal leaf regions had similar Ca concentrations, regardless of tipburn status. Use of resistant cultivars appears to be the best method of reducing tipburn incidence in cauliflower.

Free access

Field studies were conducted on a Hubbard loamy sand (sandy, mixed, frigid Entic Hapludoll) during 1996 and 1997 at Becker, Minn., to evaluate the effect of a polyolefin-coated urea (POCU) fertilizer (Meister, Chisso Co., Japan) on yield and quality of irrigated `Russet Burbank' potatoes (Solanum tuberosum L.). The POCU was a 3:1 mixture of 70-day and 50-day release formulations, respectively, based on historical soil temperatures at the site. The study compared five banded nitrogen (N) rates (110, 155, 200, 245, and 290 kg·ha-1 N) as a split application of urea applied at emergence and hilling, vs. POCU applied at planting. All plants received an additional 30 kg·ha-1 N as monoammonium phosphate band-applied at planting. Yields were higher in 1996 because of cooler temperatures and poor tuber set in 1997. Total and marketable yields averaged, respectively, 3.9 and 3.3 Mg·ha-1 higher with POCU than with urea. Total yield was not affected by rate of N application regardless of source, but marketable yield increased linearly with N rate. The yield of marketable tubers larger than 170 g increased linearly with N rate in both years. Gross return was 10% higher with POCU than with urea, but estimated net return showed a significant sourc × N rate interaction. The net return increased by $3.13 per kg of urea-N applied, but there was no significant change across POCU application rates.

Free access

Polyolefin-coated fertilizers are slow-release fertilizers coated with thermoplastic resins that have a temperature-dependent nutrient release pattern. A field study was conducted on a Hubbard loamy sand during 1997 and 1998 at Becker, Minn., to evaluate the effect of polyolefin-coated urea (POCU) fertilizers (Meister, Chisso Co., Japan) on yield and quality of irrigated `Russet Burbank' potatoes (Solanum tuberosum L.). The coated fertilizers were POCU-50 and POCU-70, which release 80% of their N in 50 and 70 days, respectively, at 25 °C, and a 1 POCU-50: 1POCU-70 mixture. The study compared three soluble urea treatments (N at 0, 140, and 280 kg·ha-1) split-applied at planting, emergence, and hilling vs. the same N rates of coated urea fertilizers applied in a band at planting. In 1997, a season characterized by high leaching, total and large tuber (>168 g) yields were higher with coated urea sources than soluble urea at equivalent N rate, but the N sources gave similar yields in 1998 when leaching was minimal. In both years, doubling the rate of N as soluble or coated urea from 140 to 280 kg·ha-1 had no effect on total yield, but increased the marketable yield (tuber size). Yields were higher in 1998 compared to 1997 due to poorer tuber set in 1997. However, the percentage of large tubers was higher in 1997. Specific gravity increased slightly with N rate but did not differ with N source at equivalent N rate. Hollow heart incidence was similar among all treatments in 1997, but it increased with N rate and was similar among N sources in 1998.

Free access

Phosphorus contamination of surface water is a growing problem associated with container production of nursery plants. Iron and iron compounds have the ability to adsorb phosphorus and render it immobile. Incorporating iron compounds into media at the base of nursery containers serves to filter out phosphorus from fertilizers while still allowing the plant to collect enough phosphorus to grow. Two experiments were devised. The first experiment examined how much phosphorus various iron compounds would adsorb. Metallic iron adsorbed the most phosphorus, followed by HCl reacted magnetite (a form of iron ore), Fe2O3, Fe3O4 and magnetite. In the second experiment, PVC tubes (4 cm inner diam.) were filled to a level of 5 cm with a phosphorus adsorbing layer containing growing media that was 25% or 50% by weight iron compounds. Compounds included metallic iron, HCl reacted magnetite and magnetite. Plain media was used as a control. A layer of 15 cm of media and slow-release fertilizer was applied above the adsorptive layer. One hundred milliliters of distilled water was applied to PVC tubes daily to simulate irrigation. Metallic iron reduced phosphorus leachate to almost 0 for over 2 weeks. HCl reacted magnetite was also effective in reducing phosphorus leachate. Magnetite only affected phosphorus leachate slightly.

Free access

Recent demand for high-quality garlic (Allium sativum L.) has prompted an interest in growing garlic as an alternative crop in the Upper Midwest. The overall objective of this study was to determine the effects of various amendments on garlic growth and selected soil quality indices in two contrasting soils. Garlic (Rocambole type) was planted in the fall of 1995 on a Kandota sandy loam (5% organic matter) and a Spartan loamy sand (1.5% organic matter). Three treatments replicated three times were tested: 1) a nonamended control, 2) manure compost, and 3) fertilizer application based on a soil test. Scapes were removed on half the plants in each plot and allowed to grow until harvest on the other half. Soil microbial biomass nitrogen (N) and carbon (C) were determined before planting and about 4 weeks after emergence. Within each site, the effect of soil amendments on garlic yield depended on scape removal. Garlic yield in nonamended soil was lowest when scapes were not removed. The effect of scape removal tended to diminish when compost or fertilizer was applied. Overall yields were 35% higher in the sandy loam soil compared to the loamy sand soil. Drought stress occurred during bulbing at both locations. Higher yields in the sandy loam soil were likely due to its higher water-holding capacity. Soil amendments did not consistently affect microbial biomass N and C; however, the sandy loam soil had 2 to 6 times higher biomass N and 3 to 4 times higher biomass C than the loamy sand soil and reflected the higher organic matter content of the sandy loam.

Free access

Applying appropriate rates of nitrogen fertilizer during the growing season for potatoes on irrigated sandy soils is an important concern from both a production and environmental standpoint. Although potatoes on sandy soils are responsive to nitrogen fertilizer, high rates of nitrogen applied early in the growing season have been associated with nitrate leaching due to unpredictable rainfall. Use of lower nitrogen rates applied more frequently through the season is one strategy to minimize nitrate losses and improve nitrogen use efficiency. Portable nitrate electrodes were used to measure nitrate concentrations in petiole sap. Diagnostic criteria based on final yield and nitrate sap concentrations at various growth stages were developed over a three year period. This rapid test can now be used to make an immediate assessment of nitrogen status of the plant and a prediction for whether supplemental nitrogen will be needed. On-farm trials are currently being carried out to demonstrate the use of the saptest as a best management practice.

Free access

Abstract

Genotypic variation in the capacity of plants to absorb, translocate, and use mineral nutrients has been the subject of many investigations since initial reports in the 1920s and 1930s (5, 6) However, it has only been within the past 15 to 20 years that researchers have made concerted efforts to understand and exploit genetic differences in plant nutrition as a means to improve crop production. Slow progress in this area can be attributed to emphasis on amending soils for plants rather than selecting plants for particular soil conditions (1–3, 7, 17). Lack of a clear understanding of mechanisms involved at cellular, tissue, and whole-plant levels has also impeded progress. Breeding for desirable nutritional traits in plants is, with few exceptions, a complex process, likely to involve more than one gene, and greatly affected by various environmental factors. Despite these challenges, there has been some success in breeding nutritionally improved genotypes (3, 7, 17). The use of soil amendments to replenish nutrients used by plants will always be an integral part of crop production, but it is now recognized that selecting plants for improved nutritional characteristics can be a viable and, at times, necessary alternative for increasing crop pro

Open Access

An important aspect of establishing critical sap nutrient concentrations for diagnostic purposes is to determine the accuracy and precision of the analytical method used. We compared a Cardy flat membrane NO3 electrode, a Hach portable NO3 electrode, and a Wescan N analyzer for their ability to determine NO3 concentrations in sap of potato petioles. The Hach and Wescan instruments require diluted sap, while nondiluted sap can be used with the Cardy. Nitrate-N concentrations in nondiluted petiole sap measured with the Cardy electrode were 100 to 200 mg·liter–1 higher than the other two methods. Using sap diluted with 0.15 M Al2(SO4)3 tended to lower Cardy NO3 readings to concentrations closer to the other methods, but made the procedure more complicated for practical use. We also compared a Cardy K electrode with flame emission spectroscopy for determining K concentrations in sap. Using nondiluted sap with the Cardy procedure resulted in K concentrations 1000 to 1700 mg·liter–1 lower than those determined by flame emission. Diluting sap with 0.15 M Al2(SO4)3 for use with the Cardy electrode resulted K concentrations similar to those determined by flame emission. Implications for using the electrodes for diagnostic purposes will be discussed.

Free access

Two on-farm field studies were conducted in 1996 and repeated in 1997 to determine the effects of soil amendments and scape (flower stalk) removal on yield, dry matter partitioning, and storage quality of hardneck garlic (Allium sativum L.). One study site was on a loamy sand soil with low organic matter and fertility and the other site was on a sandy loam soil with high organic matter and fertility. Soil amendment treatments tested at both sites were: 1) no amendment, 2) composted manure, and 3) inorganic fertilizer according to soil test recommendations. A fourth treatment, dried, composted turkey-manure-based fertilizer, was included at the low organic matter site. Scapes were removed at the curled stage from plants in half of the harvest rows. Scapes from the remainder of the harvest row plants were allowed to mature until harvest. In 1997, bulbs from each treatment were stored at 0 to 3 °C or 19 to 21 °C for 6 months. Soil amendment treatments had no effect on total garlic bulb yield, dry mass partitioning, or stored bulb weight loss at the sandy loam, high organic matter site. Manure compost, fertilizer, and composted turkey manure soil amendments reduced the yield of smaller bulbs compared with the control at the loamy sand, low organic matter site. The proportion of bulbs >5 cm was highest with the manure compost treatment. At the low organic matter site, scape removal resulted in a 15% increase in bulb yield and an increase in bulb size compared with leaving scapes on until harvest (P = 0.05). At the high organic matter site, scape removal increased bulb yield by 5% (P = 0.10). Scape removal increased dry matter partitioning to the bulbs, but had no effect on total (scape + shoot + bulb) aboveground dry matter production. The increase in bulb dry mass when scapes were removed was offset by an increase in scape dry mass when scapes were left on. Bulb weight loss in storage was less at 0 to 3 °C than 19 to 21 °C. Soil amendments only affected bulb storage quality at the loamy sand, low soil organic matter site. The effect of scape removal on bulb weight loss was nonsignificant at either location.

Free access

An important aspect of establishing critical sap nutrient concentrations for diagnostic purposes is to determine the accuracy of the analytical method used. We compared a Cardy flat membrane NO3 electrode, a Hach portable NO3 electrode, and a Wescan N analyzer for their ability to determine NO3 concentrations in sap of potato (Solanum tuberosum L.) petioles. The Hach and Wescan instruments require diluted sap, while nondiluted sap can be used with the Cardy. Nitrate-N concentrations in nondiluted petiole sap measured with the Cardy electrode were 90 to 120 mg·L–1 higher than the other two methods. Using sap diluted with 0.075 m aluminum sulfate tended to lower Cardy NO3 readings to concentrations closer to the other methods, but made the procedure more complicated for practical use. We also compared a Cardy K electrode with flame emission spectroscopy for determining K concentrations in sap. Using nondiluted sap with the Cardy procedure resulted in K concentrations 200 to 2500 mg·L–1 lower than those determined by flame emission, depending on K concentration of the sap. Diluting sap with 0.075 m aluminum sulfate or deionized water for use with the Cardy electrode resulted in K concentrations similar to those determined by flame emission.

Free access