Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: C. Wiese x
  • HortTechnology x
Clear All Modify Search

Concerns over the environmental impact and economics of harvesting sphagnum and reed-sedge peat have increased the desire to identify acceptable peat substitutes for use in container substrates. This preliminary study evaluated the use of composted dairy manure solids as a substitute for sphagnum or reed-sedge peat in container substrates for production of woody ornamental shrubs and assessed potential leaching of nutrients. Walter's viburnum (Viburnum obovatum), sandankwa viburnum (Viburnum suspensum), and japanese privet (Ligustrum japonicum) were grown in 3-gal plastic containers with seven substrates containing (by vol.) 60% pine bark, 10% sand, and 30% sphagnum peat (S), reed-sedge peat (R), and/or composted dairy manure solids (C). Substrate composition had no effect on plant quality ratings for any species, growth index (GI) of walter's viburnum, or shoot and root dry weight of walter's viburnum and japanese privet. However, the GI of japanese privet and sandankwa viburnum was the lowest when grown in substrates containing a high percentage of reed-sedge peat (0S:3R:0C). Substrate effects on average nitrate + nitrite nitrogen leachate losses were minimal over the 88-day leachate collection period. However, the substrate containing the highest proportions of composted dairy manure solids (0S:0R:3C) generally had the highest average ammonium nitrogen and dissolved reactive phosphorus losses compared with other substrates. All substrates tested as part of this study appeared to be commercially acceptable for production of container-grown woody ornamental shrub species based on growth and quality. However, average nutrient losses from containers differed depending on the peat or peat substitute used to formulate the substrates.

Full access

Current nitrogen (N) fertilizer recommendations for landscape-grown ornamentals are based on limited research. The objective of this research was to evaluate plant response of selected warm- and cool-season annuals to N fertilizer applied at five rates in the landscape. Three warm-season annual species [‘Profusion Cherry’ zinnia (Zinnia elegans ×angustifolia), ‘Cora White’ vinca (Catharanthus roseus), and ‘Golden Globe’ melampodium (Melampodium divaricatum)] and three cool-season annual species [‘Telstar Crimson’ dianthus (Dianthus chinensis), ‘Delta Pure Violet’ pansy (Viola wittrockiana), and ‘Montego Yellow’ snapdragon (Antirrhinum majus)] were transplanted into raised beds containing subsoil fill in U.S. Department of Agriculture (USDA) hardiness zone 9a. Slow-release N fertilizer was applied over an 18-week period at an annual N rate of 0, 2, 4, 6, and 12 lb/1000 ft2. Trials were replicated a second year. Plant size index (SI), tissue chlorophyll (SPAD), and plant quality were determined every 6 weeks. Shoot biomass and tissue total Kjeldahl N (TKN) were determined at 18 weeks. Regression analysis indicated that all species required N inputs at annual rates exceeding 8 lb/1000 ft2 to achieve maximum size, shoot biomass, or SPAD. However, acceptable quality plants were produced at much lower N rates. We suggest application of N fertilizer at a rate of 4 to 6 lb/1000 ft2 per year to landscape-grown annuals to maintain acceptable plant quality and growth. We expect fertilization at lower rates (based on aesthetics) can reduce the amount of fertilizer applied and the potential for nutrient losses in runoff or leachate. Future research should address N fertilization needs in higher fertility soils as well as the response of other plant species.

Free access

Recent research suggested that the nitrogen (N) fertilizer rates needed to maintain high-quality landscape plants was lower than rates needed to grow the largest size plants. Our objective was to evaluate the effect of N fertilizer rate on the aesthetic quality of various landscape-grown annual and perennials species. Nineteen cool-season annuals, 20 warm-season annuals, and 4 perennials were planted into raised beds containing subsoil fill material in a completely randomized design in west-central Florida (U.S. Department of Agriculture hardiness zone 9b). Plants were fertilized every 12 weeks with polymer coated, slow-release N (42N–0P–0K) fertilizer at annual N rate of 3, 5, or 7 lb/1000 ft2 (annuals) or 1, 3, or 5 lb/1000 ft2 (perennials). Plants were rated for aesthetic quality every 6 weeks for a period of 18 weeks (annuals) or 54 weeks (perennials). For most species, quality ratings of plants fertilized with 3 lb/1000 ft2 of N per year (annuals) or 1 lb/1000 ft2 of N per year (perennials) were not significantly lower than plants receiving higher rates of N annually. Previously reported N fertilizer recommendations for central Florida of 2 to 4 lb/1000 ft2 per year should be adequate for maintaining acceptable quality landscape-grown annual and herbaceous perennial plant species.

Full access

Research supporting recommendations for fertilizer needs of landscape-grown vines and groundcovers is lacking. The objectives of our study were to (1) evaluate the quality response of selected vine and groundcover species to nitrogen (N) fertilization at five rates and (2) validate the recommended N fertilizer rates (from the initial evaluation) by monitoring quality of additional landscape-grown vine and groundcover species. Three vine species and two groundcover species were planted in west-central Florida into raised beds containing subsoil fill material in a completely randomized design. Plants were fertilized every 6 weeks with a controlled release fertilizer (20N–0P–0K–23S) at an annual N rate of 0, 2, 4, 6, or 12 lb/1000 ft2. Plant aesthetic quality (0–5 scale) was assessed every 6 weeks for 30 weeks after planting. Although quality of some species increased significantly as N rate increased, all plants supplied with at least 4 lb/1000 ft2 per year N fertilizer had acceptable quality ratings of 3 or better. Screening of three additional vines and four additional groundcovers fertilized with controlled release fertilizer (42N–0P–0K) at an annual N rate of 3, 5, or 7 lb/1000 ft2 confirmed that fertilization with 2 to 4 lb/1000 ft2 per year should be adequate to maintain acceptable vines and groundcovers grown in the landscape in west-central Florida.

Full access

Although new and innovative measures to reduce landscape water consumption are being sought, traditional methods of water restrictions and plant selection prevail. Species native to North America are often promoted as drought tolerant with little information to support or refute such claims. Furthermore, species performance is unknown in maintained environments such as commercial and residential landscapes. Thus, 10 native and 10 exotic species, commonly used in landscapes, were evaluated independently for postestablishment growth and aesthetics under irrigated and nonirrigated landscape conditions. Growth indices were recorded monthly, with dieback and plant density evaluated at termination of the experiment. At termination of the experiment, canopy size of eight native [beautyberry (Callicarpa americana), fringe tree (Chionanthus virginicus), yaupon holly (Ilex vomitoria ‘Nana’), virginia sweetspire (Itea virginica), wax myrtle (Myrica cerifera), chickasaw plum (Prunus angustifolia), saw palmetto (Serenoa repens), and coontie (Zamia floridana)] and eight exotic [golden dewdrop (Duranta erecta), cape jasmine (Gardenia augusta), crape myrtle (Lagerstroemia indica), oleander (Nerium oleander), japanese pittosporum (Pittosporum tobira), indian hawthorn (Rhaphiolepis indica), sweet viburnum (Viburnum odoratissimum), and sandankwa viburnum (V. suspensum)] species were similar for irrigated and nonirrigated treatments. Irrigation resulted in larger canopy sizes for two native [walter's viburnum (V. obovatum) and inkberry (I. glabra)] and two nonnative [japanese privet (Ligustrum japonicum) and fringe flower (Loropetalum chinensis)] species. Among the native species with larger canopy sizes under irrigated conditions, all are indigenous to swamps and streams. With the exception of virginia sweetspire, plant density and dieback were similar for irrigated and nonirrigated plants of all taxa examined. Irrigated virginia sweetspire plants had higher plant density and dieback ratings than nonirrigated plants. Results indicate that, aesthetically, irrigated and nonirrigated plants were similar. Data emphasize the importance of selecting plant material adapted to existing environmental landscape conditions.

Full access

Previous research on #3 nursery container-grown shrubs suggests that some common shrub species could be established in the Florida landscape under natural rainfall when irrigated with 3 L of water every 4 days in U.S. Department of Agriculture hardiness zones 8b and 9a or every 2 days in zone 10b until first roots reached the canopy edge (≈20 weeks after planting). The current study evaluated the effects of these irrigation frequency recommendations on plant vigor, canopy growth, root growth, and aesthetic quality of 21 common landscape shrub species (10 Florida native and 11 non-native) planted in Florida in zones 8b, 9a, or 10b. Data suggests that it may be appropriate to adopt the 20-week low-volume irrigation recommendations for the establishment of a wide variety of container-grown Florida native and non-native shrubs. However, Florida native and non-native shrubs should be monitored for symptoms of drought stress for 2 years after planting.

Full access

There is limited research regarding proper fertilization rates and timing for landscape-grown herbaceous perennials. Most current nitrogen (N) fertilizer recommendations for landscape-grown perennials are based on rates for woody landscape plants or on rates for greenhouse-grown perennials. In addition, most fertilizer guidelines are defined to achieve peak growth, which may not be the best indicator of desirable plant quality. Basing fertilizer input rates on plant quality levels rather than maximum growth may result in a lower fertilizer application rate and a reduction in excess fertilizer available for leaching. The objective of this research was to evaluate the response of landscape-grown herbaceous perennials to N fertilizer applied at five rates. Five herbaceous perennials [bush daisy (Gamolepis chrysanthemoides), ‘New Gold’ lantana (Lantana ×hybrid), ‘Mystic Spires’ salvia (Salvia longispicata ×farinacea), ‘Evergreen Giant’ liriope (Liriope muscari), and ‘White Christmas’ caladium (Caladium bicolor)] were transplanted into raised landscape beds containing subsoil fill in U.S. Department of Agriculture (USDA) hardiness zone 9a. Controlled-release N fertilizer was applied at an annual N rate of 0, 2, 4, 6, and 12 lb/1000 ft2 for 96 weeks. Plant size index (SI), tissue chlorophyll, and plant quality were measured every 6 weeks for 96 weeks. Flower cover was determined every 6 weeks from 42 to 96 weeks. Shoot biomass and tissue total Kjeldahl N (TKN) were measured at 96 weeks after planting (WAP). Regression analyses suggested that some species required in excess of 12 lb/1000 ft2 N to reach maximum size, chlorophyll content, and shoot biomass. However, plants exhibited quality ratings of good to excellent at annual N rates of 2 to 4 lb/1000 ft2 N per year. We suggest that these low to moderate levels of N fertilization (2 to 4 lb/1000 ft2 N per year) will provide sufficient N to produce acceptable size and quality herbaceous perennials in the landscape.

Full access