Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: C. W. Heuser x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

Changes in the levels of putative free and conjugated indole-3-acetic acid (IAA) were examined by high performance liquid chromatography (HPLC) during the first 96 hr of adventitious root formation in mung bean [Vigna radiata (L.) R. Wilcz. ‘Berken’] stem cuttings. The putative IAA was characterized as biologically and chemically similar to IAA; ester- and amide-conjugated IAA also were found. Amide-conjugated IAA was an order of magnitude more abundant than either free or ester-conjugated IAA, both of which were present at low levels. In duplicate experiments, the relative levels of free and conjugated IAA in the rooting region fluctuated similarly during root formation, although some differences in timing and magnitude were observed.

Open Access

Abstract

Adventitious roots in mung bean [Vigna radiata (L.) R. Wilcz. cv. Berken] cuttings develop from specific “rooting-zone parenchyma” (R-ZP) cells. Microautoradiography was used to determine the timing of thymidine and uridine incorporation into the R-ZP cells, prior to the first cell division, in the presence or absence of naphthaleneacetic acid (NAA). Since 6-3H-thymidine incorporation reached a maximum between 11 and 14 hours, we suggest that the R-ZP cells were in the G1 phase when the cuttings were taken. Tritiated uridine was incorporated into the RNA of the R-ZP cells 2 hours after the cuttings were placed in the labeled solution. DNA synthesis and cell division of the R-ZP cells occurred along the entire length of the hypocotyl (basal, middle, and top segments), but these initial events were not sufficient to result in the subsequent formation of adventitious roots. NAA promoted adventitious root formation in the cuttings but it had no apparent effect on nucleic acid labeling nor initial cell division of the R-ZP cells. The initial division of the R-ZP cells appears to be a wounding response and occurs in the presence or absence of exogenous auxin.

Open Access