Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Bruce W. Wood x
  • HortTechnology x
Clear All Modify Search
Author:

The United States pecan [Carya illinoinensis (Wangenh.) K. Koch] industry is based on about 10,107,170 trees (about 15% nonbearing) comprising about 492,137 acres (199,168 ha) of orchards (34% in Texas, 27% Georgia, and 17% Oklahoma) dispersed among about 19,900 farm operations (36% in Texas, 16% Georgia, and 7% Oklahoma) in 24 states. Fifty-six percent of this acreage is on farms with ≥100 acres (40.5 ha) of trees (i.e., 5% of total farms). An evaluation of production related changes over the last decade indicate fundamental changes occurring in the nature of the U. S. industry. These include a) movement toward agricultural industrialization as reflected by fewer small-farms and more large-farms; b) reduced percentage of young (i.e., nonbearing) trees in most major producing states; c) substantial decline in number of farms and acres in the southeastern regionhistorically the primary production area-yet substantial growth in the northern region of production; d) a national 3% increase in the number of pecan farms and 14% increase in acreage; and e) substantial demographic changes, such as the enhanced importance of the southwestern region including New Mexico with diminished importance of many southeastern states. States also drastically differ in degree of biennial bearing, as measured by the biennial bearing index (i.e., K = 0.04 - 0.73; where 0 = no production variation and 1 = maximum variation), average production efficiency of both orchards [Epa = 192 - 1,224 lb/acre (215 - 1,374 kg·ha-1)] and trees [Ept = 19 - 60 lb/tree (8.6 kg/tree)], variation in grower prices (cv = 18 - 36%), and relationship between price and national supply of pecan (r 2 = 0.94 - 0.03). For the pecan industry as a whole, average price received for nut-meats is as closely associated with national supply of pecan nut-meats as that of almond and pistachio and is far better than that of walnut-pecan's primary competitor. The supply of pecan meats on-hand at the beginning of the season, plus supply from the current season's crop, plus the price of walnut meats accounts for 80% of price variation in average United States pecan meat price.

Full access
Author:

There is increasing evidence of substantial pollination related crop losses by pecan [Carya illinoensis (Wangenh.) K. Koch] orchards. These most likely occur in block-type orchards consisting of only one or two cultivars, but can also occur at locations with a great number of different genotypes nearby. Main crop cultivars should generally be within about two rows of pollinizers to ensure cross-pollination. Thus, block widths exceeding about four rows between pollinizers are especially likely to exhibit serious pollination problems. Scattered trees of off-type genotypes are potentially of major importance as backup orchard pollinizers. Tree age/size and spring temperatures influence the characteristics of flower maturity windows and are probably primary factors contributing to pollination-related fruit-set losses in many block-type orchards. Flower maturity tends to be earlier in older/larger trees while warmer springs accelerate catkin development relative to that of pistillate flowers. Because of substantial variability in relative differences associated with initiation and duration of flower maturity windows within either protandrous or protogynous flowering types (i.e., Type I or II), selection of complementary pollinizers should be based on the relatively high resolution 30-class flowering classification system rather than the traditional low resolution 2-class system. Other factors sometime causing pollination related crop losses are either abnormally wet weather or strong dry winds during the pollination period or abnormally warm or cool springs. Pollination problems can be visually detected by noting premature non insect related post pollination fruit drop or diminishing fruit set with increasing distance from pollinator trees or off-type genotypes within the orchard.

Full access
Author:

Of 18 commonly used adjuvants evaluated on pecan [Carya illinoinensis (Wangenh) K. Koch], a few exhibited potential for substantially suppressing net photosynthesis (A) and the conductance of foliage to water vapor (g sw ) when used within their recommended concentration range; however, most provided no evidence of adversely influencing A or g sw . Suppression of gas exchange by certain adjuvants persisted at least 14 days after a single application. The recently developed organosilicone-based surfactants generally exhibited the greatest potential for suppression. These data indicate that orchard managers should consider the potential adverse influence of certain adjuvants when developing orchard management strategies.

Full access
Author:

Pecan [Carya illinoinensis (Wangenh.) K. Koch] nursery transplants performed best on establishment in nonirrigated orchards when using large trees planted early in the dormant season. After 6 years, growth and survival of bare-root transplants were equal to that of containerized transplants when established during the dormant season. Reducing transplant trunk height by ≤75% at planting did not affect subsequent tree survival, although rate of height growth and tree vigor increased such that there was no difference between pruned and nonpruned trees after 3 years, except that pruned trees appeared to possess greater vigor. There also were no differences in growth or survival between augured and subsoil + augured planting sites within 6 years of transplanting, and there were no differences between root pruned (severe tap or lateral root pruning) and nonpruned trees.

Full access

An ever increasing cost:price squeeze on the profitability of pecan (Carya illinoinensis) farming is driving a search for alternate husbandry approaches. `Wichita' and `Western' trees maintained at relatively high tree population density, by mechanized hedge pruning and topping, produced greater nut yield than an orchard treatment in which tree population density was reduced by tree thinning (144% for `Wichita' and 113% for `Western Schley'). Evaluation of three different hedge pruning strategies, over a 20-year period, identified a discrete canopy hedge pruning and topping strategy using a 2-year cycle, as being superior to that of a discrete canopy hedge pruning and topping strategy using an 8-year cycle, but not as good as a continuous canopy hedge pruning and topping strategy using a 1-year cycle. An evaluation of 21 commercial cultivars indicated that nut yields of essentially all cultivars can be relatively high if properly hedge pruned [annual in-shell nut yields of 2200 to 3626 lb/acre (2465.8 to 4064.1 kg·ha-1), depending on cultivar]. Comparative alternate bearing intensity and nut quality characteristics are reported for 21 cultivars. These evaluations indicate that pecan orchards can be highly productive, with substantially reduced alternate bearing, when managed via a hedge-row-like pruning strategy giving narrow canopies [3403 lb/acre (3814.2 kg·ha-1) for `Wichita' and 3472 lb/acre (3891.5 kg·ha-1) for `Western Schley']. North-south-oriented (N-S) hedgerows produced higher yields that did east-west (E-W) hedgerows (yield for N-S `Wichita' was 158% that of E-W trees and N-S `Western Schley' was 174% that of E-W trees).

These data indicate that mechanized hedge pruning and topping offers an attractive alternative to the conventional husbandry paradigm.

Full access

This study examines the relationship between foliar nitrogen:potassium (N:K) ratio and in-shell yield of pecan [Carya illinoinensis (Wangenh.) K.Koch]. Regression analysis of linear and curvilinear relationships between leaflet N:K ratio and in-shell yield identified associations relevant to orchard nutrition management. Analysis revealed that ON (heavy crop) year N:K ratio correlates with ON year yield (r2 = –0.69), OFF (light crop) year yield (r2 = +0.34), 2-year average yield (r2 = −0.52), and difference between ON and OFF year yields (r2 = –0.69) below the optimum yield level (less than 1800 kg·ha−1) for southeastern U.S. pecan orchards. Pecan yield therefore appears to be associated with N:K ratio. This study suggests that a decline in pecan yield is associated with high N:K ratios in the ON year, thus meriting further investigation into the relationships of N and K to yield. It is suggested that pecan orchards be managed such that foliage contains a N concentration of 2.5% to 2.9% and a K concentration of 1.3% to 1.5% while maintaining the N:K ratio at ≈2:1 for maximization of pecan yields in the southeastern United States over the long term.

Full access