Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Bruce L. Dunn x
  • HortTechnology x
Clear All Modify Search

Biochar is considered an environmentally friendly potting mix ingredient because it sequesters carbon, and its biomass can be obtained from renewable resources. If the biomass is obtained from the undesirable eastern redcedar (Juniperus virginiana), then it has the additional benefit of helping to curtail its spread and protect natural habitats. If consumers recognize this benefit, then they may be willing to pay a premium for potting mix made from eastern redcedar biochar. This study used an internet survey of potting mix customers to measure the size of this potential premium. The results showed that consumers were willing to pay $2.42/ft3 more for potting mix containing 20% eastern redcedar biochar (by weight). This premium was even larger for respondents who were aware of the weedy nature of eastern redcedar.

Open Access

Uniconazole is approved for use as a chemical option on tomato (Solanum lycopersicum) for height control, but research is limited. In this study, 12 tomato cultivars were chosen with three cultivars each of indeterminate, determinate, heirloom, and container types. Plants were sprayed with a one-time application of 0, 2.5, 5, 7.5, or 10 mg⋅L–1 of uniconazole during the two- to four-leaf stage to evaluate height control. Results indicated no significant difference between concentrations for plant height, stem caliper, and plant dry weight. The greatest soil plant analysis development (SPAD) values were observed with the 10-mg⋅L–1 treatment. Flower response in ‘Brandywine’ to a single application of 0, 2.5, or 5 mg⋅L–1 of uniconazole demonstrated a greater number of flowers per plant at 5 mg⋅L–1, whereas no significant difference was shown for the number of flower clusters or the number of flowers per cluster at other treatment levels. Using 2.5 mg⋅L–1 uniconazole was effective for reducing plant height across all cultivars of greenhouse-grown tomato seedlings compared with the control, whereas addition of 5 mg⋅L–1 was shown to increase the number of flowers in the heirloom cultivar Brandywine.

Open Access

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Open Access

Four experiments were conducted under greenhouse conditions in Oklahoma. Pelleted ‘Genovese’ basil (Ocimum basilicum) seeds were sown in polystyrene flats with six different blends of a peat-lite mix (PL0) and yard waste compost [YWC (this batch designated C0)] in 2012 for the first two experiments. The proportions by volume of PL0:C0 included 100%:0%, 80%:20%, 60%:40%, 40%:60%, 20%:80%, and 0%:100%. Seedling establishment was unaffected consistently, but there was a distinct decline in seedling height and dry weight between 100% PL0 and 80% PL0:20% C0, followed by smaller decreases as the percentage of compost increased in the blends. A third experiment was conducted in 2013 with a different batch of peat-lite (PL1) after the compost had aged 17 months (now designated C1). Treatments were 100% PL1, 80% PL1:20% C1, and 80% PL1:20% C1 mixed with sulfur (S) at 1, 2, or 3 lb/yard3 of blend to acidify the media. The 100% PL1 treatment delayed seedling emergence and suppressed height and dry weight relative to seedlings grown in 80% PL1:20% C1 blends. The PL1 subsequently was found to have been produced in 2010, and the wetting agent had apparently degraded. The aged 2012 compost (C1) was not inhibitory to basil seedling growth when blended at 20% with the PL1, and in fact restored utility to the PL1. The carbon:nitrogen ratio of the original 2012 compost (C0) was 10.8:1, suggesting stability. It appeared that the main reason the C0 compost was inhibitory was that mineralization was slow or immobilization occurred, causing a lack of plant-available nitrogen, especially nitrate. Treatments with S lowered pH of the media, but there were no differences in basil seedling growth between the unamended 80% PL1:20% C1 blend and blends with added S. A fourth experiment compared three peat-lite media: PL1; a batch of the same medium as PL1 that was produced in 2013 (PL2); and a different medium also produced in 2013 (PL3). Peat-lite media were either used unblended, or blended with 20% C1 or 20% C2 (a fresh batch of YWC obtained from the same facility that had produced the original C0). The unamended PL1 was again inhibitory to basil seedling establishment and development. The two “fresh” peat-lite media (PL2 and PL3) were not inhibitory and were similar to each other in performance. A blend of 80% PL2 or 80% PL3 with 20% compost produced similar (C2) or somewhat better (C1) results than were obtained with the unamended peat. We conclude that a blend of 80% peat-lite medium and 20% YWC can be used to produce basil transplants. However, producers must consider the quality of the peat-lite medium and the compost based on the age and composition of the components.

Full access

Pansy (Viola ×wittrockiana) is a greenhouse crop commonly grown under black shade net; it often requires the use of chemical plant growth regulators to maintain a compact growth habit. Nonchemical efforts to alter plant morphology, such as height, would provide a more sustainable solution than chemical application. The objective of these studies was to evaluate the effects of different colors of shade nets on controlling growth and flowering of pansy. In Expt. 1, ‘Clear Yellow’, ‘Buttered Popcorn’, and ‘Deep Orange’ pansy plugs were placed under 30% blue or black shade net or, as a control group, where grown with no shade net. In Expt. 2, the same three cultivars of pansy were grown under 50% black, red, pearl, or aluminized shade net. Data were collected on plant height, plant width, flower number, plant survival, soil plant analysis development chlorophyll meter (SPAD) readings, and light quality. In Expt. 1, the blue shade net reduced height to flower and height to leaves, but also decreased flower number and plant survival as compared with black shade net. All plants under no shade died. In Expt. 2, SPAD, an indicator of plant quality by estimating leaf greenness, was found to be lower under black shade net, whereas pearl shade net led to a decrease in plant height and no effect on the number of flowers. Light quality, including red-to-far-red ratio, varied among shade treatments, whereas light intensity was reduced under aluminized, black (50%), and red shade nets compared with other shade treatments. Blue and pearl shade nets both reduced plant height, but blue shade net also reduced plant survival and flowering.

Open Access