Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Bert M. Cregg x
- HortTechnology x
Interest in capturing and reusing runoff from irrigation and rainfall in container nurseries is increasing due to water scarcity and water use regulations. However, grower concerns related to contaminants in runoff water and other issues related to water safety are potential barriers to the adoption of water capture and reuse technologies. In this review, we discuss some of the key concerns associated with potential phytotoxicity from irrigating container nursery crops with recycled runoff. The concentration of pesticides in runoff water and retention ponds is orders of magnitude lower than that of typical crop application rates; therefore, the risk of pesticide phytotoxicity from irrigation with runoff water is relatively low. Nonetheless, some pesticides, particularly certain herbicides and insecticides, can potentially affect crops due to prolonged chronic exposure. Pesticides with high solubility, low organic adsorption coefficients, and long persistence have the greatest potential for crop impact because they are the most likely to be transported with runoff from container pads. The potential impact on plant growth or disruption of physiological processes differs among pesticides and sensitivity of individual crop plants. Growers can reduce risks associated with residual pesticides in recycled irrigation water by adopting best management practices (e.g., managing irrigation to reduce pesticide runoff, reducing pots spacing during pesticide application, use of vegetative filter strips) that reduce the contaminant load reaching containment basins as well as adopting remediation strategies that can reduce pesticide concentrations in recycled water.
Irrigation of fraser fir (Abies fraseri) in Christmas tree production is gaining importance in the upper midwestern United States because of the intensive planting of this species out of its natural range. However, current scheduling practices rely on empirical observations with no monitoring of soil moisture and no use of automated irrigation system. The goal of this project was to design, construct, and implement a tensiometer-based automated irrigation system for fraser fir Christmas tree plantations that would (1) use existing technologies, (2) apply water based on changes in soil moisture content, (3) provide operational flexibility, and (4) interface with a computer for system changes, data collection, and system modifications. Soil tensiometers equipped with 4- to 20-milliampere transducers were installed at two drip-irrigated tree farms. Water on demand was controlled by soil moisture tension levels that triggered the stimulation of a relay wired to solenoids delivering irrigation water to the various treatments. The system functioned according to the design as expected. However, several issues associated with the need for regular maintenance of tensiometers, computer programming, and system wiring created some challenges regarding the reliability and transferability of similar system to commercial facilities.
Containerized conifers are increasingly marketed and used as live Christmas trees worldwide. However, prolonged exposure to indoor conditions may reduce cold hardiness. We examined physiological and morphological changes of three species black hills spruce (Picea glauca), balsam fir (Abies balsamea), and douglas fir (Pseudotsuga menziesii var. glauca) subjected to in-home conditions for 10 and 20 days. Shoot cuttings were subjected to artificial freeze testing (AFT) and the physiological and morphological changes were evaluated by chlorophyll fluorescence, bud mortality, and needle damage. After 7 days indoors, bud temperature at 50% lethality (LT50) was −24.5 °C for douglas fir, −23.5 °C for black hills spruce, and −22.5 °C for balsam fir. After 20 days indoors, bud LT50 increased to −18 °C for black hills spruce and balsam fir, and −21 °C for douglas fir. The effect of the indoors exposure on needle damage was very limited for black hills spruce and balsam fir; however, severe needle damage was apparent on douglas fir even at just 3 days of indoor exposure (LT50 = −21 °C). This negative impact worsened with indoor exposure time with LT50 for after 20 days of indoor exposure at −7 °C. Chlorophyll fluorescence values followed a similar trend with needle damage with black hills spruce and balsam fir showing no difference, while douglas fir values were significantly affected. These results confirm the hypothesis that live trees kept indoors for extended periods progressively deharden and become very sensitive to cold damage when moved outdoors following the indoor exposure. However, whole plant survival after transplantation in the field did not corroborate results obtained from the AFT. Further studies are needed to investigate the potential causes of the high transplantation mortality following the display treatments.
Containers made from natural fiber and recycled plastic are marketed as sustainable substitutes for traditional plastic containers in the nursery industry. However, growers’ acceptance of alternative containers is limited by the lack of information on how alternative containers impact plant growth and water use (WU). We conducted experiments in Michigan, Kentucky, Tennessee, Mississippi, and Texas to test plant growth and WU in five different alternative containers under nursery condition. In 2011, ‘Roemertwo’ wintercreeper (Euonymus fortunei) were planted in three types of #1 (≈1 gal) containers 1) black plastic (plastic), 2) wood pulp (WP), and 3) recycled paper (KF). In 2012, ‘Green Velvet’ boxwood (Buxus sempervirens × B. microphylla siebold var. koreana) was evaluated in 1) plastic, 2) WP, 3) fabric (FB), and 4) keratin (KT). In 2013, ‘Dark Knight’ bluebeard (Caryopteris ×clandonensis) was evaluated in 1) plastic, 2) WP, and 3) coir fiber (Coir). Plants grown in alternative containers generally had similar plant growth as plastic containers. ‘Roemertwo’ wintercreeper had high mortality while overwintering in alternative containers with no irrigation. Results from different states generally show plants grown in fiber containers such as WP, FB, and Coir used more water than those in plastic containers. Water use efficiency of plants grown in alternative containers vs. plastic containers depended on plant variety, container type, and climate.