Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: B. B. Rhodes x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

Eleven of 39 varieties and lines resulted in good canned slice color in both unusually warm and unusually cool growing seasons for carrots. A number of lines showed seasonal interaction in color, with better color in the cool season, while others resulted in consistently fair or poor color in both growing seasons. No single pigment was highly correlated with color across the range of environmental and genetic diversity encountered in the study. Beta-carotene was the only single component showing a significant positive correlation with color. The highest multiple relationship with color considered beta-carotene, other carotenes except alpha carotene, and xanthophylls. Within a season this multiple correlation accounted for 47 to 50% of the color variance (R of .710 for spring and .686 for fall grown carrots).

Open Access

Abstract

Watermelons Plant Introductions (PI) 189225, PI 271775, PI 271778, and PI 299379 were resistant to a population of Colletotrichum langenarium (Pass.) Ell. & Halst. in 3 states. Entries PI 203551, PI 270550, and PI 271779 were resistant in some field and greenhouse tests.

Open Access

Juvenile albino, gene symbol ja, is a spontaneous virescent mutant, first observed in `Dixielee' and an F2 population of `G17AB' (msms) × `Dixielee' in 1992. Hypocotyls, new young leaves, shoot tips, tendrils and flowers on the main shoot of the ja mutant are all albino during early spring. The interior portions of albino leaves gradually become green, while the margins remain albino. Fruit rind color of the mutant is variegated. Growth of the ja mutant is severely impaired in the early spring. However, the mutant grows at a rate comparable to wild-type in the summer, and produces fruit of almost normal size. Genetic analysis of F1, F2, and BC1 populations derived from the ja mutant showed that the gene for the ja mutant is inherited as a single, recessive, nuclear gene. Segregation ratios in the F2 and BC1 progenies derived from the cross between the previously reported delayed green virescent mutant and the ja mutant indicate independent inheritance of the genes dg and ja. Temperature and red/far-red light had no differential effect on mutant and the wild-type plants. An increase of daylength from 8 to 15 hours increased fresh weight and chlorophyll content more in the ja mutant than in the wild-type. The mutant had a higher chlorophyll a: b ratio than the wild-type under long days. Chlorophyll synthesis or accumulation in the mutant is severely impaired under short days. This is the only virescent mutant in the family Cucurbitaceae whose expression is regulated by daylength.

Free access

Isozyme, randomly amplified polymorphic DNA (RAPD), and simple sequence repeats (SSR) markers were used to generate a linkage map in an F2 and F3 watermelon [Citrullus lanatus (Thumb.) Matsum. & Nakai] population derived from a cross between the fusarium wilt (Fusarium oxysporum f. sp. niveum) susceptible `New Hampshire Midget' and resistant PI 296341-FR. A 112.9 cM RAPD-based map consisting of 26 markers spanning two linkage groups was generated with F2 data. With F3 data, a 139 cM RAPD-based map consisting of 13 markers covering five linkage groups was constructed. Isozyme and SSR markers were unlinked. About 40% to 48% of the RAPD markers were significantly skewed from expected Mendelian segregation ratios in both generations. Bulked segregant analysis and single-factor analysis of variance were employed to identify RAPD markers linked to fusarium wilt caused by races 1 and 2 of F. oxysporum f. sp. niveum. Current linkage estimates between the resistance trait and the marker loci were too large for effective use in a marker-assisted selection program.

Free access

Gibberellins (GAs) are phytohormones that regulate plant height and flowering time in plants. Plants with reduced GA or disrupted in GA signaling exhibit a dwarf phenotype. DELLA proteins are transcriptional repressors that attenuate GA-mediated promotion of plant growth. Alleles in which the eponymous DELLA motif in these proteins is disrupted result in constitutive repression of GA signaling and a dominantly inherited dwarf phenotype. We found that the dwarf Helianthus annuus (sunflower) cultivar Sunspot is hyposensitive to GA3 as compared with the tall cultivar Mammoth Grey. Sequencing of the HaDella1 gene indicates that ‘Sunspot’ has a single nucleotide polymorphism resulting in a missense mutation in the DELLA motif as compared with ‘Mammoth Grey’ and the reference sequence. Helianthus annuus has five genes encoding DELLA proteins, including HaDella1. We propose that the DELLA motif alteration in the HaDella1 gene results in a dominant mutation in ‘Sunspot’ and is the cause of its dwarf phenotype.

Free access