Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Asmita Paudel x
  • HortTechnology x
Clear All Modify Search

‘Coy’ alder-leaf mountain mahogany (Cercocarpus montanus) is a new cultivar developed from a species native to the western United States with potential for use in xeriscaping, rock gardens, and water-efficient landscaping. However, efficient propagation methods are not well developed for it. In this study, cutting propagation of ‘Coy’ alder-leaf mountain mahogany was investigated over 3 years to evaluate the effects of wounding method, rooting hormone, type of cuttings collected, and time for cutting collection on rooting. In May, Jul, and Sep 2020, 2021, and 2022, nondormant hardwood subterminal cuttings and/or semihardwood terminal cuttings were collected for wounding studies. Before the treatment with 3000 mg·L−1 indole-3-butyric acid (IBA) in powder, cuttings were wounded either by scraping one side (scrape) or by perpendicular cuts around the base (cut), and cuttings without additional wounding were used as the control. Similarly, subterminal and terminal cuttings of ‘Coy’ alder-leaf mountain mahogany were collected during the same time and were used for hormone treatments. Cuttings were treated with 1000 or 3000 mg·L−1 IBA in powder or 1000/500 or 3000/1500 mg·L−1 IBA/NAA (1-naphthaleneacetic acid) in solution. Wounding by cut or scrape increased the rooting percentage. In addition, most cuttings wounded by the scrape method had better rooting than those wounded with cuts. On the basis of hierarchical cluster analyses, cuttings treated with 3000 mg·L−1 IBA in powder had greater rooting than those treated with other hormones. Therefore, our research showed that successful rooting of subterminal or terminal stem cuttings of ‘Coy’ alder-leaf mountain mahogany can be achieved through wounding using scrape method and by treatment with 3000 mg·L−1 IBA in powder.

Open Access

Screening salinity-tolerant plants is usually time intensive and only applicable to a limited number of salinity levels. A near-continuous gradient dosing (NCGD) system allows researchers to evaluate a large number of plants for salinity tolerance with multiple treatments, more flexibility, and reduced efforts of irrigation. Rose of sharon (Hibiscus syriacus), ninebark (Physocarpus opulifolius), and japanese spirea (Spiraea japonica) were irrigated using an NCGD system with eight electrical conductivity (EC) levels ranging from 0.9 to 6.5 dS·m–1. At 11 weeks after irrigation was initiated, there were no significant differences among EC levels in terms of visual score, growth index [(Height + Width 1 + Width 2)/3], stem diameter, number of inflorescences, and shoot dry weight (DW) of rose of sharon. However, the root DW, relative chlorophyll content (SPAD), and net photosynthesis rate (Pn) of rose of sharon decreased linearly as EC levels increased. Ninebark and japanese spirea had increased foliar salt damage with increasing EC levels. The growth index, stem diameter, number of inflorescences, shoot and root DW, SPAD, and Pn of ninebark decreased linearly as EC levels increased. The growth index and SPAD of japanese spirea decreased quadratically with increasing EC levels, but its stem diameter, number of inflorescences, shoot and root DW, and Pn decreased linearly with increasing EC levels. The salinity threshold (50% loss of shoot DW) was 5.4 and 4.6 dS·m–1, respectively, for ninebark and japanese spirea. We were not able to define the salinity threshold for rose of sharon in this study. However, rose of sharon was the most salinity-tolerant species among the three landscape plants.

Open Access