Search Results
You are looking at 1 - 9 of 9 items for :
- Author or Editor: Andrew P. Nyczepir x
- HortScience x
Peach tree short life (PTSL) is associated with the presence of ring nematode, Mesocriconema xenoplax, and poor orchard management practices. The ability of postplant nickel (Ni) foliar application to suppress M. xenoplax population density and thereby prolong survival of peach trees on a PTSL site infested with M. xenoplax was investigated from 2004 to 2011. For this study, the site was divided into plots, which received the following treatments: 1) Ni (foliar-applied); 2) methyl bromide fumigation (MBr); and 3) an untreated control. Peach trees were planted into all plots in Mar. 2005 and the foliar Ni treatment was applied three times in 2005 and 2006. Nickel did not detectably suppress M. xenoplax populations as compared with MBr fumigation. The protective effect of MBr fumigation in suppressing M. xenoplax population density persisted for 27 months after orchard establishment. Trees receiving multiple foliar Ni applications at 0.45 g·L−1 over 2 years, while exposed to M. xenoplax, exhibited greater PTSL mortality than trees growing in untreated or MBr-fumigated plots. These results suggest that foliar applications of Ni to peach trees, growing on a PTSL site, should be used with caution in commercial orchards because these treatments can deleteriously disrupt tree metabolic/physiological processes sufficient to increase the incidence of PTSL tree mortality.
Mouse-ear (ME) is a potentially severe anomalous growth disorder affecting pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. It is especially severe in second generation sites throughout much of the Gulf Coast Coastal Plain of the southeastern U.S., but can also occur in potted nursery trees. Orchard and greenhouse studies on trees treated with either Cu or Ni indicated that foliar applied Ni corrects ME. ME symptoms were prevented, in both orchard and greenhouse trees, by a single mid-October foliar spray of Ni (nickel sulfate), whereas nontreated control trees exhibited severe ME. Similarly, post budbreak spring spray applications of Ni to foliage of shoots of orchard trees exhibiting severe ME prevented ME symptoms on subsequent growth, but did not correct morphological distortions of foliage developed before Ni treatment. Foliar application of Cu in mid-October to greenhouse seedling trees increased ME severity the following spring. Post budbreak application of Ni to these Cu treated MEed seedling trees prevented ME symptoms in post Ni application growth, but did not alter morphology of foliage exhibiting ME before Ni treatment. Thus, high leaf Cu concentrations appear to be capable of disrupting Ni dependent physiological processes. Foliar application of Ni to ME prone trees in mid-October or soon after budbreak, is an effective means of preventing or minimizing ME. These studies indicate that ME in pecan is due to a Ni deficiency at budbreak. It also supports the role of Ni as an essential plant nutrient element.
Mouse-ear (ME) is a potentially severe anomalous growth disorder affecting young pecan [Carya illinoinensis (Wangenh.) K. Koch] trees in portions of the Gulf Coast Coastal Plain of the southeastern United States. A survey of its incidence and severity found it to be commonly exhibited by replants on second-generation orchard sites, or where mature pecan trees previously grew. While most frequently observed as a replant problem, it also occasionally occurs at sites where pecan has not previously grown. The disorder is not graft transmissible and is only temporarily mitigated by pruning. Degree of severity within the tree canopy typically increases with canopy height. Several morphological and physiological symptoms for mouse-ear are described. Important symptoms include dwarfing of tree organs, poorly developed root system, rosetting, delayed bud-break, loss of apical dominance, reduced photoassimilation, nutrient element imbalance in foliage, and increased water stress. The overall symptomatology is consistent with a physiological deficiency of a key micronutrient at budbreak, that is influenced by biotic (e.g., nematodes) and abiotic (e.g., water and fertility management strategies) factors. A comparison of orchard soil characteristics between ME and adjacent normal orchards indicated that severely affected orchards typically possessed high amounts of soil Zn, Ca, Mg, and P, but low Cu and Ni; and were acidic and sandy in texture. The Zn: Cu ratio of soils appears to be a major factor contributing to symptoms, especially since ME severity increases as the Zn: Cu ratio increases. However, Ni may also be a factor as the Zn: Ni ratio is also larger in soils of ME sites. It is postulated that the “severe” form of mouse-ear is primarily due to the physiological deficiency of copper at budbreak, but may also be influenced by Ni and nematodes.
Mouse-ear (ME) is a severe growth disorder affecting pecan [Carya illinoinensis (Wangenh.) K. Koch] trees from southeastern U.S. Gulf Coast Coastal Plain orchards. Slight to moderate ME was substantially corrected by foliar sprays of either Cu or GA3 shortly after budbreak, but sprays were ineffective for severely mouse-eared trees. Applications of Cu, S, and P to the soil surface of moderately affected trees corrected deficiencies after three years. Incorporation of Cu or P in backfill soils of newly planted trees prevented ME, whereas incorporation of Zn or Ca induced ME and Mn was benign. The severe form of ME, commonly exhibited by young trees, appears to be linked to a physiological deficiency of Cu and/or Ni at the time of budbreak. It likely occurs as a replant problem in second-generation orchards due to accumulation of soil Zn from decades of foliar Zn applications to correct Zn deficiency.
The expression of gastrodianin antifungal protein (GAFP) in a form of its VNF isoform increases tolerance to Phytophthora root rot (Phytophthora cinnamomi) and the root-knot nematode (Meloidogyne incognita) in transgenic plum lines. However, nothing is known about the potential of the GAFP lectin to confer disease resistance to the ring nematode, Mesocriconema xenoplax, in plum. Three transgenic plum lines (4I, 4J, and 5D) expressing gafp-1 under the control of CaMV 35S promoter sequence were evaluated for their response to M. xenoplax in the greenhouse. All plum lines were rated as hosts of M. xenoplax. Among the individual plum lines tested, the number of M. xenoplax per gram of dry roots was lowest in the rhizosphere of transgenic line 5D, intermediate in that of the nontransformed control line, and greatest in line 4J. The results of this study indicate that the comparisons of the final soil densities (Pf) of adult and juvenile M. xenoplax expressed as nematodes per gram of dry roots provide a better measure of the nematode carrying capacity by the tested lines than Pf values referred to as number of M. xenoplax/100 cm3 soil.
The discovery of nickel (Ni) deficiency in field plantings of pecan [Caryaillinoinensis (Wangenh.) K. Koch] (Wood et al., 2004) has led to efforts to identify appropriate management approaches to correct tree deficiency and to identify the causes for Ni deficiency. Evaluation of several inorganic and organic forms of Ni have indicated that solutions from all sources function well to correct deficiencies when timely applied as a foliar spray to affected trees at Ni concentrations >10 mg·L-1. Addition of urea, ammonium nitrate, or nicotinic acid to Ni spray solutions increased apparent foliar uptake from Ni sprays. The lower critical level of Ni, based on foliar analysis, appears to be in the 3-5 mg·L-1 dw range, with the upper critical level appearing to be >50 mg·L-1 dw. The cause of Ni deficiency in soils possessing plenty of Ni is associated with excessive amounts of one or more metals (e.g., Ca, Mg, Fr, Mn, Cu, and Zn) that inhibit Ni uptake and/or utilization. Root damage by nematode feeding and cool/dry soils during early spring also contributes to Ni deficiency. Foliar application of Ni to foliage in the autumn and subsequent appearance of Ni in dormant season shoot tissues indicates that Ni can be mobilized from senescing foliage to dormant season shoots and is therefore available for early spring growth. Evidence indicates that pecan has a higher Ni requirement than most other crop species because it transports nitrogenous substances as ureides. Thus, there is evidence that Ni-metalloenzymes are playing either a direct or indirect role in ureide and nitrogen metabolism. It is postulated that crop species that are most likely to exhibit field level Ni deficiencies are those that transport N as ureides. Candidate crops will be discussed.
Two F1 hybrid Prunus rootstocks, K62-68 and P101-41, developed from a cross of `Lovell' [susceptible to both Meloidogyne incognita (Kofoid and White) Chitwood and M. javanica (Treub) Chitwood] and `Nemared' (resistant to both root-knot nematode species), were selfed to produce two F2 seedling populations. Vegetative propagation by herbaceous stem cuttings was used to produce four or eight self-rooted plants of each F2 seedling for treatment replications. Eggs of M. incognita and M. javanica were inoculated into the potted media where plants were transplanted, and plants were harvested and roots examined for signs and symptoms associated with root-knot nematode infection ≈120 days later. Segregation ratios in both F2 families suggested that resistance to M. incognita in `Nemared' is controlled by two dominant genes (Mi and Mij) and that to M. javanica by a single dominant gene (Mij). Thus, Mij conveys resistance to both M. incognita and M. javanica.
The effects of rootstock, pruning, and preplant soil fumigation on floral bud dormancy status and shoot cold hardiness of `Redhaven' peach [Prunus persica (L.) Batsch] trees were monitored. Dormancy status, expressed as percent floral budbreak, was significantly affected by rootstock and pruning, although differences were small. In late January, significant interactions occurred between rootstock and pruning treatments, as well as between pruning and soil treatments. Pruning of trees on Lovell rootstock resulted in significantly lower budbreak as compared to trees on Nemaguard and unpruned trees on Lovell. Also, for trees pruned in December, higher budbreak was associated with those growing in fumigated vs. nonfumigated soil. Treatment effects on dormancy status did not correspond with treatment effects on hardiness. In fact, differences in hardiness were minimal and probably not biologically meaningful.
Six commonly known peach rootstocks (i.e., Flordaguard, Guardian®, Halford, Lovell, Nemaguard, and Okinawa) were evaluated for their susceptibility to Meloidogyne mayaguensis in the greenhouse. All rootstocks were rated as either nonhosts (highly resistant) or poor hosts (resistant) of M. mayaguensis. Lovell generally supported greater numbers of M. mayaguensis eggs per plant and eggs per gram of dry root, whereas no nematode reproduction was noted on Flordaguard rootstock (nonhost). Root galling occurred on all six rootstocks. However, reproduction as measured by number of egg masses, eggs per plant, and eggs per gram of dry root was a better measure of host resistance than number of root galls per plant.