Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Amjad Ahmad x
  • HortTechnology x
Clear All Modify Search

Nitrogen (N) management in macadamia (Macadamia integrifolia) orchards is an important concern for growers. Leaf tissue analysis is the accepted method for determining N status in macadamia; however, this process is expensive and time-consuming. The chlorophyll meter has been used in other crops to estimate N status in plants through estimation of the amount of chlorophyll in leaf tissue. The use of the chlorophyll meter in two macadamia cultivars (Kakea and Kau) at two locations in Hawai’i (Kapa’au and Pahala) and five time periods (12 Apr. 2017, 13 June 2017, 15 June 2017, 18 Dec. 2017, and 20 Feb. 2018) was assessed. Leaf samples were collected based on a tissue-sampling protocol, chlorophyll meter (SPAD) values were collected, and leaves were analyzed for total N concentration. Data were analyzed statistically using linear regression. Leaf tissue N concentration had a positive monotonic relationship to SPAD values for both macadamia cultivars, both locations, and all sampling periods. The sampling period of Apr. 2017 for ‘Kakea’ macadamia had the greatest R 2 value for the linear regression at 0.85. The Feb. 2018 sampling period had an R 2 value for the linear regression of 0.74. ‘Kau’ macadamia had the greatest R 2 value for the linear regression of 0.24 in the Dec. 2017 sampling period. The slopes of the two macadamia cultivars for June 2017 were different from each other, suggesting that N recommendations need to be customized for specific macadamia cultivars if sampled in summer. The chlorophyll meter can be used for general estimation of tissue N in macadamia. Additional methods need to be considered and researched to refine procedures for direct estimation of total N concentration when using the chlorophyll meter.

Open Access

Effects of wet and dry storage methods were compared to improve postharvest performance of specialty cut flower species. While increasing duration of storage reduced vase life, vase life declined less with dry storage for marigold (Tagetes erecta) and rose (Rosa hybrida), but not for zinnia (Zinnia elegans) or lisianthus (Eustoma grandiflorum) over wet storage. Marigold stems had 1.9, 4.6, and 1.5 days longer vase life after 1, 2, or 3 weeks in dry storage, respectively, as compared with storage in water. Zinnia stems did not tolerate either wet or dry storage, while lisianthus stems had a longer vase life when stored in water as compared with dry storage. For rose, dry storage for 2 weeks increased vase life compared with wet storage. Dry stored marigold and lisianthus stems had higher water uptake after being placed in the vase as compared with the stems stored in water, while zinnia and rose had less uptake. Storage method had no effect on leaf relative water content (LRWC) in lisianthus, marigold, and zinnia; however, LRWC decreased with increased storage duration. This necessitates evaluation of storage method and duration effects for each species and cultivar to ensure extended storage life and improve postharvest quality.

Full access