Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Amjad Ahmad x
  • HortScience x
Clear All Modify Search

Macadamia (Macadamia integrifolia, Maiden & Betche) orchard management in Hawaii can result in the loss of organic matter and soil degradation. The objective of this study was to determine the effects of macadamia husk mulch, husk mulch combined with biochar, husk mulch combined with effective microorganisms (EM), soil profiling, and wood chip mulch on yield, nut quality, root growth, and SPAD values during a 1-year study of mature macadamia orchards at two locations in Hawaii. A partial cost–benefit analysis was performed to compare the costs and yield benefits of each treatment. Soil profiling resulted in higher yields than any other treatment, at a mean of 86.6 kg wet-in-husk per tree. No treatments significantly affected nut quality or dry kernel weight. Nut quality was affected by harvesting time, with the earliest harvesting (Aug. 2017) period resulting in the highest recovery rate of number 1 grade kernels (33%). SPAD values increased with the husk mulch combined with EM (6.5%) treatment and soil profiling treatment (6.9%). Husk combined with EM caused an 87% increase in total root biomass during the study period due to increased proteoid root biomass. The soil profiling treatment had the second lowest estimated cost per hectare and had the highest estimated partial profit per hectare. Soil profiling is a destructive management practice and should be used judiciously until its long-term effects on orchard health are studied. The inoculation of EM or sugar signaling may have been responsible for the proliferation of proteoid roots with the husk mulch and EM treatment.

Free access

The application of locally available invasive algae biomass as a fertilizer for crop production in Hawaii is being investigated as a substitute for imported chemical fertilizers. Three closely related greenhouse trials were conducted to determine if the algae served as a source of potassium (K) on growth, yield, and K mineral nutrition in pak choi (Brassica rapa, Chinensis group). In the first trial, three algal species (Gracilaria salicornia, Kappaphycus alvarezii, and Eucheuma denticulatum) were applied at five rates of K, each to evaluate their effects on growth and K nutrition of pak choi plants. The pak choi was direct seeded into 0.0027-m3 pots containing peatmoss-based growth media. In trial 2, pak choi was grown in peat media at six rates of K provided by algae (E. denticulatum) or by potassium nitrate (KNO3). In trial 3, the six rates of K were provided through algae (K. alvarezii), KNO3, and potassium chloride (KCl) and were compared for growth and K nutrition. Results from the first greenhouse trial showed no significant differences among the three algal species in yield or tissue K content of pak choi. However, plant yield and tissue K concentration were increased with application rates. The maximum yield and tissue K were observed when K was provided within the range of 250–300 kg·ha−1. Similarly, in Expts. 2 and 3, there were no significant differences between commercial K fertilizers and algal K species for yield. Only K rates were significant for yields and tissue K concentrations. It was concluded that K in the invasive algae was similarly available as K in commercial synthetic fertilizers for pak choi growth in terms of yield and tissue K content under our experimental conditions.

Free access