Search Results
Autonomous (i.e., robotic) mowers have recently garnered interest with the public and within the turfgrass industry. However, limited research has been conducted on their use for mowing warm-season turfgrasses. An experiment was conducted at the University of Florida’s West Florida Research and Education Center (Jay, FL, USA) to investigate the performance of an autonomous mower using a lower than recommended height-of-cut on St. Augustinegrass (Stenotaphrum secundatum). Treatments included an autonomous mower with a height-of-cut of 2.5 inches set to mow daily and a conventional mulching mower with weekly mowing at recommended height-of-cut of 3.5 inches. Data collection included weekly digital images that were subjected to digital image analysis to determine overall turfgrass quality, percent green cover, and uniformity. The autonomous mower resulted in greater overall turfgrass quality from January to March and in November, and greater green cover from November to April compared with conventional mowing. Additionally, the autonomous mower produced greater turfgrass uniformity than conventional mowing. Results indicate that autonomous mowers can be successfully used to maintain St. Augustinegrass at a lower than recommended height-of-cut.
The use of nonpotable water for irrigation on various sport venues has led to an increased use of seashore paspalum (Paspalum vaginatum) turf in Hawaii. An ongoing challenge many seashore paspalum turf managers struggle with is bermudagrass (Cynodon dactylon) infestations. Herbicide efficacy studies were conducted at the Hoakalei Country Club [‘SeaDwarf’ seashore paspalum (fairway cut)] and the Magoon Research Station [‘SeaStar’ seashore paspalum (grown in container)] on the island of Oahu in Hawaii. Spray applications of the herbicides mesotrione, topramezone, metribuzin, and ethofumesate were evaluated alone and in tank mixtures for bermudagrass suppression and seashore paspalum injury. At the Hoakalei Country Club, maximum bermudagrass injury with minimal seashore paspalum discoloration was obtained with tank mixes of mesotrione (0.06 lb/acre) + metribuzin (0.19 lb/acre) + ethofumesate (1.00 lb/acre) and topramezone (0.02 lb/acre) + metribuzin (0.19 lb/acre) + ethofumesate (1.00 lb/acre). Unacceptable seashore paspalum turf injury was obtained in all treatments that did not include metribuzin. At the Magoon Research Station, maximum selective bermudagrass suppression was achieved with tank mixes of topramezone (0.01 lb/acre) + ethofumesate (1.00 lb/acre) and topramezone (0.01 lb/acre) + metribuzin (0.09 lb/acre) + ethofumesate (1.00 lb/acre). The addition of metribuzin and/or ethofumesate to the tank mix safened (reduced turf discoloration) seashore paspalum to topramezone or mesotrione foliar bleaching. Tank mixes of mesotrione, topramezone, metribuzin, and ethofumesate have the potential for bermudagrass suppression and control of other grassy weeds in seashore paspalum turf.
Tall fescue (Schedonorus arundinaceus) offers an alternative to kentucky bluegrass (Poa pratensis) for use on athletic fields. Tall fescue has the ability to withstand athletic field traffic, but little is known about the best management practices such as optimal height of cut (HOC). A 2-year study was conducted on established ‘Snap Back’ tall fescue grown over a native soil root zone to determine optimal HOC under simulated athletic field traffic. Plots were maintained at various HOC treatments (1.5, 2, or 3 inches) for the duration of the growing season. Twenty-five simulated traffic events were applied each fall with a modified Baldree traffic simulator. The percentage of green cover (GC) loss per traffic event by HOC varied between years. In 2017, the 1.5-inch HOC improved traffic tolerance (–1.7% GC per event) compared with the other HOC treatments (–2.6% GC per event) in terms of percentage of GC. In 2018, the HOC did not have an impact on traffic tolerance. Differences in traffic tolerance between years could be a result of differences in precipitation (78 mm in 2017, 6 mm in 2018) during the period when traffic occurred, which suggest that the lower HOC performs better under wet conditions compared with the greater HOC. There were no differences among treatments for the safety variables measured (surface hardness, rotational resistance, and soil moisture).
Aeration and sand topdressing are important cultural practices for organic matter management on golf course putting greens. Many golf courses lack the budget for applications of new sand topdressing material. A 2-year study was conducted to investigate the effect of recycling sand from hollow-tine aerification cores on a sand-based creeping bentgrass (Agrostis stolonifera) putting green soil properties and playability. Treatments included traditional [T (cores removed and sand topdressed)], verticut [V (cores broken up with verticutter)], and recycle [R (cores recycled using a core recycler)]. There were no differences in root zone organic matter, bulk density, soil porosity, infiltration rates, percent sand recovered during mowing, surface firmness, and ball roll distance between treatments during the study. Immediately after aerification treatments, T had the highest percent green cover (PGC) (38.3%) compared with V (26.9%) and R (26.8%), indicating that T offered the least sand present on the surface. Seven days after treatments, there was no difference in PGC (85.3% to 90.1%), indicating all treatments recovered similarly. Alternative aerification treatments V and R could be useful techniques to minimize or reduce the amount of sand used for backfilling core aeration holes without compromising the putting green soil properties and playability.