Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: A.N. Trigiano x
- Journal of the American Society for Horticultural Science x
Somatic embryogenesis from leaf midrib explants of Dendranthema grandiflora Tzvelev. `Iridon' cultured on modified Murashige and Skoog basal medium (MSB) containing 1.0 mg 2,4-D and 0.2 mg BA/liter was influenced by light and sucrose concentration. Somatic embryos formed directly from explants when cultured on medium containing 9% to 18% sucrose and incubated first in the dark for 28 days, followed by 10 days in light, and then returned to the dark for 14 days. Embryogenesis did not occur in continuous darkness and was drastically reduced when explants were incubated in light only. The most embryos were formed on medium containing either 12% or 15% sucrose; lower concentrations stimulated shoot and root development. Light also mediated embryogenesis from leaf explants of 'other cultivars. White-opaque or occasionally light-green cotyledon-stage somatic embryos germinated on MSB medium without growth regulators but containing 3% sucrose. Twelve of the 23 cultivars evaluated produced somatic embryos, but plants were recovered from only five. Regenerated plants were phenotypically similar to parent plants in growth habit, leaf morphology, and flower color. Chemical names used: N- (phenylmethyl)-1 H- purine-6-amine (BA); (2,4-dichlorophenoxy) acetic acid (2,4-D).
There are 11 recognized Cercis L. species, but identification is problematic using morphological characters, which are largely quantitative and continuous. Previous studies have combined morphological and molecular data to resolve taxonomic questions about geographic distribution of Cercis species, identifying botanical varieties, and associations between morphological variation and the environment. Three species have been used in ornamental plant breeding in the United States, including three botanical varieties of C. canadensis L. from North America and two Asian species, C. chingii Chun and C. chinensis Bunge. In this article, 51 taxa were sampled comprising eight species of Cercis and a closely related species, Bauhinia faberi Oliv. Sixty-eight polymorphic simple sequence repeat markers were used to assess genetic relationships between species and cultivars. For all samples the number of alleles detected ranged from two to 20 and 10 or more alleles were detected at 22 loci. Average polymorphic information content was 0.57 and values ranged from 0.06 to 0.91 with 44 loci 0.50 or greater. Cross-species transfer within Cercis was extremely high with 55 loci that amplified at 100%. Results support previously reported phylogenetic relationships of the North American and western Eurasian species and indicate suitability of these markers for mapping studies involving C. canadensis and C. chinensis. Results also support known pedigrees from ornamental tree breeding programs for the widely cultivated C. canadensis and C. chinensis species, which comprised the majority of the samples analyzed.
Little bluestem (Schizachyrium scoparium) is a perennial bunchgrass that is native to North American prairies and woodlands from southern Canada to northern Mexico. Originally used as a forage grass, little bluestem is now listed as a major U.S. native, ornamental grass. With the widespread planting of only a few cultivars, we aimed to assess the ploidy level and genetic diversity among some popular cultivars and accessions in the U.S. Department of Agriculture National Plant Germplasm System collection. Ten microsatellite markers, with successful amplification, were developed by using sequences available in Genbank and additional simple sequence repeat (SSR) markers were generated by using ion torrent sequencing of a genomic library created from the cultivar The Blues. A total of 2812 primer sets was designed from high-throughput sequencing, 100 primer pairs were selected, and 82 of these primers successfully amplified DNA from the Schizachyrium accessions. Only 35 primer pairs, generating 102 scored fragments, were polymorphic among S. scoparium accessions. Twenty-two primer pairs generated more than four fragments per accession. The use of a repetitive sequence identifier found that of 117 examined sequences, only nine sequences did not have similarity to DNA transposons, retrotransposons, viruses, or satellite sequences. The most frequently identified fragments were the long terminal repeat retrotransposons Gypsy (177 fragments) and Copia (98 fragments) and the DNA transposon EnSpm (60 fragments). Using the software program Structure, cluster analysis of the SSR data for S. scoparium revealed four groups. The lowest genetic similarity between little bluestem samples was 86%, which was surprising as a high degree of morphological variation is seen in this species. Furthermore, no variation in ploidy level was seen among little bluestem samples. These microsatellite markers are the first sequence-specific markers designed for little bluestem and can serve as a resource for future genetic studies.
Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.
Viburnum rufidulum is a deciduous tree native to North America that has four-season appeal, which provides commercial horticultural value. In addition, the plant has unique and attractive red pubescence on leaf buds and petioles, common to no other Viburnum species. As habitat undergoes development and subsequent fragmentation of native plant populations, it is important to have baseline genetic information for this species. Little is known about the genetic diversity within populations of V. rufidulum. In this study, seven microsatellite loci were used to measure genetic diversity, population structure, and gene flow of 235 V. rufidulum trees collected from 17 locations in Kentucky and Tennessee. The genotype data were used to infer population genetic structure using the program InStruct and to construct an unweighted pair group method with arithmetic mean dendrogram. A single population was indicated by the program InStruct and the dendrogram clustered the locations into two groups; however, little bootstrap support was evident. Observed and expected heterozygosity were 0.49 and 0.78, respectively. Low-to-moderate genetic differentiation (F ST = 0.06) with evidence of gene flow (Nm = 4.82) was observed among 17 populations of V. rufidulum. A significant level of genetic diversity was evident among V. rufidulum populations with most of the genetic variations among individual trees (86.37%) rather than among populations (13.63%), and a Mantel test revealed significant correlation between genetic and geographical distance (r = 0.091, P = 0.001). The microsatellites developed herein provide an initial assessment or a baseline of genetic diversity for V. rufidulum in a limited area of the southeastern region of the United States. The markers are a genetic resource and can be of assistance in breeding programs, germplasm assessment, and future studies of V. rufidulum populations, as this is the first study to provide genetic diversity data for this native species.