Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: A.D. Turner x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search
Authors: and

Tomato plants were induced to produce fruit with abnormally large blossom-end scars (catfaces) by exposing them to 16/10C (day/night) for 2 weeks, starting at the six-leaf stage. Fruit of the second and third, but not the first, cluster showed catface symptoms. To identify the initial period of susceptibility to catfacing, `Revolution' tomatoes were greenhouse-grown for 34,48, or 62 days and induced to catface by a gibberellic acid (GA) foliar spray (43 μM) when transplanted to the field. Catfacing was significantly increased by GA sprays (23% vs. 11% of all fruit in 1989, 22% vs. 8% in 1990). There was a highly significant interaction between plant age and catfacing, with high levels for young and medium-aged, but lower levels for old GA3-treated transplants. The early-maturing `Revolution' is susceptible to catfacing from ≈25 to 60 days after sowing. Marketable yields were highest for young and medium-aged plants in 1989 and 1990, respectively. Old plants were checked in growth after being transplanted and produced lowest yields. Avoiding catfacing by using old transplants has doubtful practical value.

Free access

Abstract

A series of field and greenhouse experiments was conducted with three cultivars of bell pepper (Capsicum annuum L.) to determine the hormonal basis for flower bud and flower abscission as induced by low light intensity (LLI). Imposition of 80% shade for 6 days increased abscission of reproductive structures by 38% and resulted in an increase in bud ethylene production. Concomitantly, bud reducing sugars and sucrose decreased and these were negatively correlated with ethylene levels and those of its precursor, ACC. Infusion of ACC into the pedicel resulted in flower bud abscission within 48 hr. The results indicate that ethylene is the primary causal agent of pepper flower bud abscission. Production of auxin by the bud plays a role in prevention of abscission. The abscission of disbudded pedicels was prevented by infusion of NAA. Although the three cultivars had similar responses to ACC, they differed in the amount of abscission under stress, bud sugar levels, and the time of onset of ACC and ethylene production. Chemical names used: 1-aminocyclopropane-1-carboxylic acid (ACC); α-napthaleneacetic acid (NAA); (2-chloro-ethyl)phosphonic acid (ethephon).

Open Access

Abstract

Roots of sweet potato [Ipomoea batatas (L.) Lam.] and beet (Beta vulgaris L.) peeled with superheated steam, had higher peel and trim yields than did those peeled with saturated steam at the same pressure. Product recovery was greater with all steam-peeling methods than with caustic peeling. Direct injection of cold water into the partially pressurized steam atmosphere of the peeler also increased product recovery. Better color retention in processed beets was obtained from steam-peeled roots than from caustic-peeled roots.

Open Access