Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: A.D. Bryan x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

To determine the effects of Sweet potato feathery mottle virus (SPFMV), and possibly other newly described potyviruses, on sweetpotato yield and storage root appearance, virus-indexed `Beauregard' and `Hernandez' mericlones testing free of known viruses were compared with virus-infected mericlones in two separate experiments over two years. The experiments were arranged in a split-plot, randomized, complete-block design with the initial presence (VI+) or absence (VI-) of SPFMV as the whole plot factor and mericlone as the subplot factor. Plants were monitored weekly for symptoms of SPFMV and vine samples were taken for virus-indexing on Ipomoea setosa. Additional testing for selected sweetpotato viruses was done using a nitrocellulose membrane enzyme-linked immunosorbant assay. SPFMV was the only virus detected in the study, using available testing methodologies. Field monitoring indicated that §100% of the VI-plants were reinfected with SPFMV by 9 weeks after planting. The presence of virus before planting reduced yields of No. 1 roots by 26% and decreased overall appearance ratings for the three `Beauregard' mericlones. In addition, VI+ planting materials resulted in increased storage root length and reduced storage root width of both cultivars leading to increased storage root length/diameter ratios, further detracting from overall storage root appearance. The results of this study demonstrate that SPFMV contributes to cultivar decline in sweetpotato. However, the interaction of SPFMV with other newly described potyviruses, which may result in synergistic negative effects on sweetpotato yield and quality, needs further research.

Free access

Decline in sweetpotato yield and storage root quality has been attributed to the accumulation of viruses, pathogens and mutations. To document the effects of decline on yield and storage root quality, two micropropagated, virus-indexed, greenhouse produced G1 `Beauregard' meristem-tip cultured clones, B94-14 and B94-34, were compared with 1) micropropagated B94-14 and B94-34 clones propagated adventitiously up to five years in the field (G2, G3, G4, G5); and 2) nonmicropropagated, unimproved stock of `Beauregard' seed in field trials during 1997 to 2001. At least three trials were located each year in sweetpotato producing regions in North Carolina. In 2000 and 2001, two trials were monitored weekly for foliar symptoms of Sweet potato feathery mottle virus (SPFMV) and other potyviruses, and virus-indexed for selected viruses using Ipomoea setosa and nitrocellulose enzyme linked immunosorbant assays (NCM-ELISA). Only SPFMV was detected in field samples using NCM-ELISA, but this does not rule out the presence of newly described viruses infecting sweetpotato for which tests were unavailable. Monitoring indicated that all G1 plants became infected with SPFMV by the end of the growing season, and that G2 to G5 plants were probably infected in their initial growing season. G1 plants consistently produced higher total yield, total marketable yield (TMY), U.S. No. 1 root yield and percent No. 1 yield than G2 to G5 plants. G1 plants also produced storage roots with more uniform shapes and better overall appearance than storage roots produced from G2 to G5 plants. Also, G2 to G5 storage roots tended to be longer than G1 storage roots. Rank mean yield and storage root quality measurements of each location were consistent with means averaged over locations per year and suggested a decrease in yield and storage root quality with successive seasons of adventitious propagation. Linear regression analysis used to model yield and storage root quality measurements of seed generations G1 to G5 indicated that total yield, TMY, No. 1 yield, percent No. 1 yield, shape uniformity, and overall appearance decreased gradually, and that length/diameter ratios increased gradually with generation. The rate of decline in No. 1 yield was greater for B94-34 compared to B94-14. Both viruses and mutations of adventitious sprouts arising from storage roots probably contribute to cultivar decline in sweetpotato, but further studies are needed to determine their relative importance. A simple profitability analysis for G1 vs. G2-G4 planting material conducted to facilitate better understanding of the economics of using micropropagated planting material to produce a crop in North Carolina revealed that growers have a potential net return of $2203/ha for G1 plants, $5030/ha for G2 plants, and $4394/ha for G5 plants. Thus, while G1 plants generally produce higher No. 1 yields, a greater monetary return can be achieved using G2 planting materials because of the high costs associated with producing G1 plants. Based on this analysis, the best returns are accrued when growers plant their crop using G2 and/or G3 seed.

Free access