Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: A. Hagiladi x
  • HortScience x
Clear All Modify Search
Author:

Abstract

Seedlings of Anigozanthos manglesii D. Don responded positively to watering and fertilization when the night temperature was 12° to I5°C; at higher temperatures, these factors caused seedling death. Cold treatment (10°C for 17 hours a day for a month) of seedlings prior to planting stimulated growth, new fan production, and flower yield. Temperatures below 10° promoted flower differentiation, whereas cultivation at higher temperatures reduced flower yield. Illuminating plants at night from 2200 to 0200 HR did not affect flower yield when plants were grown at relatively low temperatures, but it did reduce yields when they were grown in a heated greenhouse.

Open Access
Authors: and

Powdery mildew in euonymus (Euonymus japonica Thunh.) plants, caused by Oidium euonymi-japonica (Arcang.) Sacc., was controlled by applying various polymer coatings or an aqueous solution of sodium or potassium bicarbonate plus horticultural Sun Spray (SS) Ultra Fine Oil 1% (v/v) to plant foliage. The combined treatment (bicarbonate + oil) was more effective than either of the two materials alone. The results indicate that sodium or potassium (but not ammonium) bicarbonate solutions mixed with SS seems to be a useful biocompatible fungicide for controlling powdery mildew in euonymus plants. Some of the polymer coatings effectively reduced disease levels when applied immediately after the symptoms first appeared.

Free access
Authors: and

Tissue culture plantlets of Saintpaulia ionantha and Peperomia grisco-argenta were grown for 120 days in growth boxes placed in a greenhouse. The filtercovered tops of the boxes were sloped facing south, the direction of the sun, while the walls were constructed of white styrofoam board Four types of light filters covered the frames. Two blue celluloid sheets were used to alter the sunlight spectrum: one filtered out the red (B + FR), and the other removed most of the red and far-red, FR (B - FR). Two polyethylene films were formulated as light filters and diffusers: one scattered all the transmitted light and decreased the R: FR ratio (W), while the other was neutral in respect to the sunlight spectrum and did not cause light scattering (A). Vegetative growth of Saintpaulia plants was enhanced under the light-diffusing filters, resulting in higher fresh weight and larger leaves. Saintpaulia plants flowered first under the W filter, then the A filter, and last under the B + FR filter; no flowering occurred in the absence of FR light (B - RR). There was no significant difference in the development of Peperomia plants grown under the different filters. The results are discussed in relation to plant adaptation to various environments.

Free access
Authors: and

Potted Cordyline terminalis L. `Prins Albert', a foliage plant, was treated with foliar sprays or growth medium drenches of paclobutrazol for plant growth control. Paclobutrazol effectively reduced shoot length measured 4 months following application, the drench being more effective than the spray. Application of paclobutrazol at 200 ppm by either method gave a desirable compact and marketable product. Drench applications at 1000 ppm promoted side-shoot formation. Leaf morphology was altered from an elongated to a more oval form as the paclobutrazol concentration increased, but leaf count was not affected by paclobutrazol, except for the highest drench concentration, which reduced leaf count by 10%. Chemical name used: β– [(4-chlorophenyl)methyl] –α– (1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol).

Free access
Authors: and

Abstract

Antitranspirants (‘Vapor Gard’ and ‘Wilt Pruf’) effectively controlled powdery mildew on Hydrangea macrophylla Thunb. and Lagerstroemia indica Nana. A 2% antitranspirant emulsion was sufficient to suppress the pathogen’s development without causing visible phytotoxic effect or plant growth inhibition. The antitranspirants were as effective, and in some cases more effective (‘Vapor Gard’), than the systmic triazole fungicide ‘Tilt’ in controlling the disease. Hydrangea and dwarf Lagerstroemia (crapemyrtle) are grown commercially as flowering pot plants. Disease-free plants are required. Powdery mildew (Erisiphe polygoni DC) often causes severe damage on greenhouse-grown hydrangea. This fungus usually appears 1st on the lower leaf surface, where it produces a white, loose, cottony mycelium. Yellowish or purple-white blotches with mycelium also can be observed on the upper surface of the leaf. When the disease develops under favorable environmental conditions, the symptoms cover not only the entire leaf surface but also the bud clusters and flowers (11). Various fungicides control powdery mildew under greenhouse conditions.

Open Access

Abstract

The cultivation of a wide range of ornamental plants in a closed hydrosolaric greenhouse was studied. The hydrosolaric greenhouse was composed of a solar energy harvesting system and a hydroponic system. Energy collected by the greenhouse air from the sun during the day was conserved in the growth solution, which released it during the night. This system was able to maintain the air temperature 6 C above the outdoor temperature during the night. Relative humidity ranged between 85 and 100%, thus providing a favorable environment for tropical foliage plants. Philodendron bipinnatifidum Schott, Gardenia jasminoides Ellis, Ficus benjamina L., F. lyrata Warb., Anthurium andreanum Lind and Brassaia actinophylla Endl. produced under this system were of excellent quality.

Open Access